Experimental investigation of random excitation of nonlinear systems with autoparametric coupling

1989 ◽  
Vol 6 (2-4) ◽  
pp. 161-176 ◽  
Author(s):  
Raouf A. Ibrahim ◽  
Michael Evans ◽  
Yong-Joong Yoon
2021 ◽  
Author(s):  
Alwin Förster ◽  
Lars Panning-von Scheidt

Abstract Turbomachines experience a wide range of different types of excitation during operation. On the structural mechanics side, periodic or even harmonic excitations are usually assumed. For this type of excitation there are a variety of methods, both for linear and nonlinear systems. Stochastic excitation, whether in the form of Gaussian white noise or narrow band excitation, is rarely considered. As in the deterministic case, the calculations of the vibrational behavior due to stochastic excitations are even more complicated by nonlinearities, which can either be unintentionally present in the system or can be used intentionally for vibration mitigation. Regardless the origin of the nonlinearity, there are some methods in the literature, which are suitable for the calculation of the vibration response of nonlinear systems under random excitation. In this paper, the method of equivalent linearization is used to determine a linear equivalent system, whose response can be calculated instead of the one of the nonlinear system. The method is applied to different multi-degree of freedom nonlinear systems that experience narrow band random excitation, including an academic turbine blade model. In order to identify multiple and possibly ambiguous solutions, an efficient procedure is shown to integrate the mentioned method into a path continuation scheme. With this approach, it is possible to track jump phenomena or the influence of parameter variations even in case of narrow band excitation. The results of the performed calculations are the stochastic moments, i.e. mean value and variance.


2000 ◽  
Vol 22 (3) ◽  
pp. 181-192
Author(s):  
Nguyen Tien Khiem

The weakly nonlinear systems subjected to deterministic excitations have been fully and deeply studied by use of the well developed asymptotic methods [1-4]. The systems excited by a random load have been investigated mostly using the Fokker-Plank-Kolmogorov equation technique combined with the asymptotic methods [5-8]. However, the last approach in most successful cases allows to obtain only a stationary single point probability density function, that contains no information about the correlation nor' consequently, the spectral structure of the response. The linearization technique [9, 10] in general permits the spectral density of the response to be determined, but the spectral function obtained by this method because of the linearization eliminates the effect of the nonlinearity. Thus, spectral structure of response of weakly nonlinear systems to random excitation, to the author's knowledge, has not been studied enough. This paper deals with the above mentioned problem. The main idea of this work is the use of an analytical simulation of random excitation given by its spectral density function and afterward application of the well known procedure of the asymptotic method to obtain an asymptotic expression of the response spectral density function. The obtained spectral relationship covers the linear system case and especially emphasizes the nonlinear effect on the spectral density of response. The theory will be illustrated by an example and at the end of this paper there will be a discussion about the obtained results.  


1993 ◽  
Vol 15 (4) ◽  
pp. 1-6
Author(s):  
Di Paola Mario ◽  
Nguyen Dong Anh

Stochastic linearization method is one of the most useful tools for analysis of nonlinear systems under random excitation. The fundamental idea of the classical stochastic linearization consists in replacing the original nonlinear equation by a linear one in such a way that the difference between two equations is minimized in the mean square value. In this paper a new version of the stochastic linearization is proposed. It is shown that for two nonlinear systems considered the new version gives good results for both the weak and strong nonlinearities.


1988 ◽  
Vol 55 (2) ◽  
pp. 467-473 ◽  
Author(s):  
R. A. Ibrahim ◽  
R. T. Heinrich

This paper presents an experimental investigation of the random parametric excitation of a dynamic system with nonlinear inertia. The experimental model is a rigid circular tank partially filled with an incompressible inviscid liquid. The random responses of the first antisymmetric and symmetric sloshing modes are considered for band-limited random excitations. These include the means, mean squares, and probability density functions of each sloshing mode. The response of the liquid-free surface is found to be a stationary process for test durations exceeding ten minutes. The time-history response records reveal four response characteristic regimes. Each regime takes place within a certain range of excitation spectral density level. An evidence of the jump phenomenon, which was predicted theoretically by using the non-Gaussian closure scheme, is also reported. Comparisons with analytical results, derived by three different approaches, are given for the first antisymmetric sloshing mode.


Sign in / Sign up

Export Citation Format

Share Document