Review of brittle fracture criteria in case of static and cyclic mixed mode loading

1984 ◽  
Vol 1 (2) ◽  
pp. 117-131 ◽  
Author(s):  
K.-F. Fischer
2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


1986 ◽  
Vol 1 (1) ◽  
pp. 73-80 ◽  
Author(s):  
I.-H. Lin ◽  
R. M. Thomson

Ductile materials are found to sustain brittle fracture when the crack moves at high speed. This fact poses a paradox under current theories of dislocation emission, because even at high velocities, these theories predict ductile behavior. A theoretical treatment of time-dependent emission and cleavage is given which predicts a critical velocity above which cleavage can occur without emission. Estimates suggest that this velocity is in the neighborhood of the sound velocity. The paper also discusses the cleavage condition under mixed mode loading, and concludes that the cleavage condition involves solely the mode I loading, with possible sonic emission under such loadings


Author(s):  
S. Chapuliot ◽  
S. Marie

This paper describes an experimental and numerical study to assess the transposability of brittle fracture criteria from specimens of one type of geometry to another. The overall “master curve” approach, the Beremin model and a proposed model using the concept of critical stress were accordingly analysed. The experimental work supporting the analysis was made on 16MND5 reactor vessel steel. This was in the form of CT25 specimens, taken as the reference type, SENT specimens, ring specimens and CTpor specimens, which are CT specimens with a semi-elliptical surface defect. The analysis itself was made in two stages: the models were first calibrated on the basis of CT25 test results, then they were applied to specimens of other geometries. We then demonstrate that, in all cases, the models correctly replicated the variation of toughness (as measured on a CT25 specimen) with temperature. However, they all failed when applied to SENT and ring specimens, where calculation underestimates the probability of fracture. For CTpor specimens, the results are better, the master curve approach and the critical stress criterion give satisfactory results (but it has not yet been possible to apply the Beremin method). This paper concludes with a detailed analysis of the crack tip stress and strain fields, followed by an attempt to explain the differences between the different types of behaviour observed.


2012 ◽  
Vol 41 ◽  
pp. 421-432 ◽  
Author(s):  
F. Berto ◽  
P. Lazzarin ◽  
C. Marangon

Sign in / Sign up

Export Citation Format

Share Document