223 Non-pyramidal neurons carrying Ca2+-permeable ampa receptors in the cerebral cortex of neonatal rats

1996 ◽  
Vol 25 ◽  
pp. S36
Author(s):  
Shun-Ichi Itazawa ◽  
Tadashi Isa ◽  
Seiji Ozawa
2021 ◽  
Vol 17 (9) ◽  
pp. e1009416
Author(s):  
Eduarda Susin ◽  
Alain Destexhe

Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness.


2001 ◽  
Vol 86 (6) ◽  
pp. 2973-2985 ◽  
Author(s):  
Sanjay S. Kumar ◽  
John R. Huguenard

Despite the major role of excitatory cortico-cortical connections in mediating neocortical activities, little is known about these synapses at the cellular level. Here we have characterized the synaptic properties of long-range excitatory-to-excitatory contacts between visually identified layer V pyramidal neurons of agranular frontal cortex in callosally connected neocortical slices from postnatal day 13 to 21( P13–21) rats. Midline stimulation of the corpus callosum with a minimal stimulation paradigm evoked inward excitatory postsynaptic currents (EPSCs) with an averaged peak amplitude of 56.5 ± 5 pA under conditions of whole cell voltage clamp at −70 mV. EPSCs had fixed latencies from stimulus onset and could follow stimulus trains (1–20 Hz) without changes in kinetic properties. Bath application of 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) abolished these responses completely, indicating that they were mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs). Evoked responses were isolated in picrotoxin to yield purely excitatory PSCs, and a low concentration of NBQX (0.1 μM) was used to partially block AMPARs and prevent epileptiform activity in the tissue. Depolarization of the recorded pyramidal neurons revealed a late, slowly decaying component that reversed at ∼0 mV and was blocked by d-2-amino-5-phosphonovaleric acid. Thus AMPA and N-methyl-d-aspartate receptors (NMDARs) coexist at callosal synapses and are likely to be activated monosynaptically. The peak amplitudes and decay time constants for EPSCs evoked using minimal stimulation (±40 mV) were similar to spontaneously occurring sEPSCs. Typical conductances associated with AMPA and NMDAR-mediated components, deduced from their respective current-voltage ( I-V) relationships, were 525 ± 168 and 966 ± 281 pS, respectively. AMPAR-mediated responses showed age-dependent changes in the rectification properties of their I-V relationships. While I-Vs from animals > P15 were linear, those in the younger (< P16) age group were inwardly rectifying. Although Ca2+ permeability in AMPARs can be correlated with inward rectification, outside-out somatic patches from younger animals were characterized by Ca2+-impermeable receptors, suggesting that somatic receptors might be functionally different from those located at synapses. While the biophysical properties of AMPAR components of callosally-evoked EPSCs were similar to those evoked by stimulation of local excitatory connections, the NMDA component displayed input-specific differences. NMDAR-mediated responses for local inputs were activated at more hyperpolarized holding potentials in contrast with those evoked by callosal stimulation. Paired stimuli used to assay presynaptic release properties showed paired-pulse depression (PPD) in animals < P16, which converted to facilitation (PPF) in older animals, suggesting a developmental transition from low probability of transmitter release to high P r at these synapses and/or alterations in the properties of the underlying postsynaptic receptors. Physiologic properties of neocortical e-e connections are thus input specific and subject to developmental changes in their postsynaptic receptors.


Neuroscience ◽  
2019 ◽  
Vol 417 ◽  
pp. 107-108
Author(s):  
Leonardo Remedios ◽  
Pedro Mabil ◽  
Jorge Flores-Hernández ◽  
Oswaldo Torres-Ramírez ◽  
Nayeli Huidobro ◽  
...  

2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Maria C Renner ◽  
Eva HH Albers ◽  
Nicolas Gutierrez-Castellanos ◽  
Niels R Reinders ◽  
Aile N van Huijstee ◽  
...  

Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.


Sign in / Sign up

Export Citation Format

Share Document