scholarly journals A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site

1993 ◽  
Vol 27 (2) ◽  
pp. 147-160 ◽  
Author(s):  
I. Günther ◽  
B. Glatthaar ◽  
G. Döller ◽  
W. Garten
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 923 ◽  
Author(s):  
An ◽  
Lee ◽  
Hong ◽  
Song ◽  
Kim ◽  
...  

Abstract: Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.


Virology ◽  
1998 ◽  
Vol 247 (2) ◽  
pp. 170-177 ◽  
Author(s):  
A.S. Gambaryan ◽  
V.P. Marinina ◽  
A.B. Tuzikov ◽  
N.V. Bovin ◽  
I.A. Rudneva ◽  
...  

2014 ◽  
Vol 88 (9) ◽  
pp. 4752-4763 ◽  
Author(s):  
N. S. Lewis ◽  
T. K. Anderson ◽  
P. Kitikoon ◽  
E. Skepner ◽  
D. F. Burke ◽  
...  

Virology ◽  
1997 ◽  
Vol 233 (1) ◽  
pp. 224-234 ◽  
Author(s):  
M.N. Matrosovich ◽  
A.S. Gambaryan ◽  
S. Teneberg ◽  
V.E. Piskarev ◽  
S.S. Yamnikova ◽  
...  

2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Donald J. Benton ◽  
Stephen A. Wharton ◽  
Stephen R. Martin ◽  
John W. McCauley

ABSTRACT Influenza A(H7N9) viruses have caused a large number of zoonotic infections since their emergence in 2013. They remain a public health concern due to the repeated high levels of infection with these viruses and their perceived pandemic potential. A major factor that determines influenza A virus fitness and therefore transmissibility is the interaction of the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) with the cell surface receptor sialic acid. Typically, the HA is responsible for binding to the sialic acid to allow virus internalization and the NA is a sialidase responsible for cleaving sialic acid to aid virus spread and release. N9 NA has previously been shown to have receptor binding properties mediated by a sialic acid binding site, termed the hemadsorption (Hb) site, which is discrete from the enzymatically active sialidase site. This study investigated the N9 NA from a zoonotic H7N9 virus strain in order to determine its possible role in virus receptor binding. We demonstrate that this N9 NA has an active Hb site which binds to sialic acid, which enhances overall virus binding to sialic acid receptor analogues. We also show that the N9 NA can also contribute to receptor binding due to unusual kinetic characteristics of the sialidase site which specifically enhance binding to human-like α2,6-linked sialic acid receptors. IMPORTANCE The interaction of influenza A virus glycoproteins with cell surface receptors is a major determinant of infectivity and therefore transmissibility. Understanding these interactions is important for understanding which factors are necessary to determine pandemic potential. Influenza A viruses generally mediate binding to cell surface sialic acid receptors via the hemagglutinin (HA) glycoprotein, with the neuraminidase (NA) glycoprotein being responsible for cleaving the receptor to allow virus release. Previous studies showed that the NA proteins of the N9 subtype can bind sialic acid via a separate binding site distinct from the sialidase active site. This study demonstrates for purified protein and virus that the NA of the zoonotic H7N9 viruses has a binding capacity via both the secondary binding site and unusual kinetic properties of the sialidase site which promote receptor binding via this site and which enhance binding to human-like receptors. This could have implications for understanding human-to-human transmission of these viruses.


Author(s):  
Se-Hee An ◽  
Chung-Young Lee ◽  
Seung-Min Hong ◽  
Chang-Seon Song ◽  
Jae-Hong Kim ◽  
...  

Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A [A(H5N1)] viruses have evolved to clade 2.3.2.1a, b and c, and currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document