Islet amyloid polypeptide (IAPP) gene analysis in a Japanese diabetic with marked islet amyloid deposition

1992 ◽  
Vol 15 (1) ◽  
pp. 45-48 ◽  
Author(s):  
Hiroshi Kajio ◽  
Tetsuro Kobayashi ◽  
Mitsuru Hara ◽  
Koji Nakanishi ◽  
Tadao Sugimoto ◽  
...  
2019 ◽  
Vol 32 (2) ◽  
pp. 95-102
Author(s):  
Andrew T Templin ◽  
Mahnaz Mellati ◽  
Raija Soininen ◽  
Meghan F Hogan ◽  
Nathalie Esser ◽  
...  

Abstract Islet amyloid is a pathologic feature of type 2 diabetes (T2D) that is associated with β-cell loss and dysfunction. These amyloid deposits form via aggregation of the β-cell secretory product islet amyloid polypeptide (IAPP) and contain other molecules including the heparan sulfate proteoglycan perlecan. Perlecan has been shown to bind amyloidogenic human IAPP (hIAPP) via its heparan sulfate glycosaminoglycan (HS GAG) chains and to enhance hIAPP aggregation in vitro. We postulated that reducing the HS GAG content of perlecan would also decrease islet amyloid deposition in vivo. hIAPP transgenic mice were crossed with Hspg2Δ3/Δ3 mice harboring a perlecan mutation that prevents HS GAG attachment (hIAPP;Hspg2Δ3/Δ3), and male offspring from this cross were fed a high fat diet for 12 months to induce islet amyloid deposition. At the end of the study body weight, islet amyloid area, β-cell area, glucose tolerance and insulin secretion were analyzed. hIAPP;Hspg2Δ3/Δ3 mice exhibited significantly less islet amyloid deposition and greater β-cell area compared to hIAPP mice expressing wild type perlecan. hIAPP;Hspg2Δ3/Δ3 mice also gained significantly less weight than other genotypes. When adjusted for differences in body weight using multiple linear regression modeling, we found no differences in islet amyloid deposition or β-cell area between hIAPP transgenic and hIAPP;Hspg2Δ3/Δ3 mice. We conclude that loss of perlecan exon 3 reduces islet amyloid deposition in vivo through indirect effects on body weight and possibly also through direct effects on hIAPP aggregation. Both of these mechanisms may promote maintenance of glucose homeostasis in the setting of T2D.


Metabolism ◽  
1999 ◽  
Vol 48 (4) ◽  
pp. 448-454 ◽  
Author(s):  
Gunilla Westermark ◽  
Per Westermark ◽  
Decio L. Eizirik ◽  
Claes Hellerström ◽  
Niles Fox ◽  
...  

1992 ◽  
Vol 15 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Rie Narita ◽  
Hirotaka Toshimori ◽  
Masamitsu Nakazato ◽  
Tadanobu Kuribayashi ◽  
Tsukasa Toshimori ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2126-P
Author(s):  
ANDREW T. TEMPLIN ◽  
MAHNAZ MELLATI ◽  
DANIEL ZEMAN-MEIER ◽  
MEGHAN F. HOGAN ◽  
NATHALIE ESSER ◽  
...  

2016 ◽  
Vol 94 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Jessica S. Fortin ◽  
Marie-Odile Benoit-Biancamano

Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer’s to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy.


Diabetologia ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 71-79 ◽  
Author(s):  
J. Vidal ◽  
C. Bruce Verchere ◽  
S. Andrikopoulos ◽  
F. Wang ◽  
R. Hull ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document