Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code

Author(s):  
K. Tesch ◽  
J.M. Zazula
2005 ◽  
Vol 50 (22) ◽  
pp. 5229-5249 ◽  
Author(s):  
Wayne Newhauser ◽  
Nicholas Koch ◽  
Stephen Hummel ◽  
Matthias Ziegler ◽  
Uwe Titt

2005 ◽  
Vol 20 (2) ◽  
pp. 23-27
Author(s):  
Francesco Teodori ◽  
Vincenzo Molinari

The aim of this work is to analyze the diffusion and the slowing down of high energy proton shots through a target. Analyzing the phenomenon rigorously with the full transport equations, means tack ling many difficulties, most of which arise from the long range nature of the Coulomb interactions involving more than one particle simultaneously. The commonly used approach of neglecting the multi-body collisions, though correct for rarefied neutral gases, of ten leads to very poor approximations when charged particles moving through dense matter are considered. Here we present a Monte Carlo simulation of the Fokker-Planck equation where the multi-body collisions are taken into account. The model al lows the calculation of a point-wise distribution of energy and momentum transferred to the tar get.


2012 ◽  
Vol 86 (3) ◽  
Author(s):  
Alejandro Ayala ◽  
Isabel Dominguez ◽  
Jamal Jalilian-Marian ◽  
J. Magnin ◽  
Maria Elena Tejeda-Yeomans

2005 ◽  
Vol 32 (6Part21) ◽  
pp. 2165-2165
Author(s):  
W Newhauser ◽  
N Koch ◽  
S Hummel ◽  
M Ziegler ◽  
U Titt

Sign in / Sign up

Export Citation Format

Share Document