Spermidine/spermine N1-acetyltransferase mRNA levels show marked and region-specific changes in the early phase after transient forebrain ischemia

1996 ◽  
Vol 38 (1) ◽  
pp. 122-134 ◽  
Author(s):  
Michele Zoli ◽  
Patrizia Pedrazzi ◽  
Isabella Zini ◽  
Luigi F. Agnati
1991 ◽  
Vol 126 (1) ◽  
pp. 6-8 ◽  
Author(s):  
Fabio Benfenati ◽  
Mauro Cimino ◽  
Michele Zoli ◽  
Roberta Grimaldi ◽  
Isabella Zini ◽  
...  

1995 ◽  
Vol 15 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Seiichirou Takano ◽  
Hidenao Fukuyama ◽  
Manabu Fukumoto ◽  
Kazunori Hirashimizu ◽  
Toshihiro Higuchi ◽  
...  

Protein tyrosine phosphorylation is thought to play an important role in the regulation of neural function. To elucidate the role that protein tyrosine phosphatases (PTPs) may play in the postischemic brain, PTPs expressed in regions of the rat brain vulnerable to transient forebrain ischemia were examined. With the reverse-transcriptase polymerase chain reaction using degenerate primers, three PTPs, STEP, PTPS, and SH-PTP2, were identified. They were expressed in the hippocampus 12 h after transient ischemia for 20 min. During the reperfusion period, the mRNA levels of these PTPs were not different from those in sham-operated rats. In contrast, a fourfold increase in the mRNA level of CL100 (3CH134), a PTP that is inducible by oxidative stress, was detected by Northern blotting in the hippocampus and cerebral cortex 1 h after the onset of reperfusion. In situ hybridization histochemistry showed a slight increase in the level of CL100 mRNA in neuronal cells in the hippocampus and cortex of postischemic rats compared to control rats. These findings suggest that PTPs play a role in the normal function of the hippocampus and cerebral cortex and demonstrate that ischemia induced CL100 expression.


1993 ◽  
Vol 18 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Michele Zoli ◽  
Francesco Ferraguti ◽  
Isabella Zini ◽  
Saverio Bettuzzi ◽  
Luigi F. Agnati

1997 ◽  
Vol 17 (12) ◽  
pp. 1303-1308 ◽  
Author(s):  
H. Uchino ◽  
O. Lindvall ◽  
B. K. Siesjö ◽  
Z. Kokaia

Preischemic hyperglycemia or superimposed hypercapnia exaggerates brain damage caused by transient forebrain ischemia. Because high regional levels of brain-derived neurotrophic factor (BDNF) protein correlate with resistance to ischemic damage, we studied the expression of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, hyperglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA in dentate granule cells was attenuated and that in CA3 pyramidal neurons completely prevented in hyperglycemic rats. No ischemia-induced increases of BDNF mRNA levels in the hippocampal formation were detected in hypercapnic animals. Hyperglycemic and hypercapnic rats showed transiently decreased expression of BDNF mRNA levels in the cingulate cortex, which was not observed in normoglycemic animals. The results suggest that suppression of the BDNF gene might contribute to the increased vulnerability of the CA3 region and cingulate cortex in hyperglycemic and hypercapnic animals.


2003 ◽  
Vol 23 (8) ◽  
pp. 962-971 ◽  
Author(s):  
Yudai Furuta ◽  
Takashi Uehara ◽  
Yasuyuki Nomura

Transient forebrain ischemia induces a delayed neuronal death in the CA1 area of the hippocampus. However, the mechanism leading to this phenomenon has yet to be established. The authors used an mRNA differential-display method to isolate genes for which mRNA levels change only in the hippocampus during ischemia/reperfusion. They succeeded in identifying the product of one down-regulated gene as phosphatidylinositol 4-kinase (PI 4-K). Compared with control levels, PI 4-K mRNA expression in the hippocampus, but not the cerebral cortex, was significantly decreased by 30% and about 80% 1 and 7 days after ischemia/reperfusion, respectively. Interestingly, PI 4-K and PI bisphosphate levels were selectively decreased in the CA1 region, but not other regions, whereas TUNEL-positive cells could be detected 3 days after ischemia. Consistent with these results, PI 4-K expression was suppressed by hypoxia in SK-N-MC neuroblastoma cells before loss of cell viability. Overexpression of wild-type PI 4-K, but not the kinase-negative mutant of PI 4-K (K1789A), recovered the loss of viability induced by hypoxia. These findings strongly suggest that a prior decrease in PI 4-K and PI bisphosphate levels caused by brain ischemia/hypoxia is partly involved in delayed neuronal cell death.


2021 ◽  
Vol 22 (2) ◽  
pp. 644
Author(s):  
Hyejin Sim ◽  
Tae-Kyeong Lee ◽  
Yeon Ho Yoo ◽  
Ji Hyeon Ahn ◽  
Dae Won Kim ◽  
...  

Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.


Sign in / Sign up

Export Citation Format

Share Document