Performance of simple cycle gas turbine engines in two modes of operation

1994 ◽  
Vol 35 (5) ◽  
pp. 433-441 ◽  
Author(s):  
Yousef S.H. Najjar
2021 ◽  
Vol 2 (43) ◽  
pp. 20-35
Author(s):  
Andrey V. Dologlonyan ◽  
◽  
Dmitriy S. Strebkov ◽  
Valeriy T. Matveenko ◽  
◽  
...  

The article presents the results obtained during the study of the characteristics of hybrid solar micro-gas turbine units with an integrated parabolocylindrical solar collector. The efficiency of a hybrid solar gas turbine plant depends both on the efficiency of the solar collector and the location of its integration, and on the efficiency of the gas turbine engine. (Research purpose) The research purpose is in studying hybrid solar gas turbine installations based on a parabolocylindrical focusing solar collector in combination with micro-gas turbine engines of various configurations to determine the most suitable match. (Materials and methods) The article considers four basic schemes of gas turbine engines running on organic fuel, their parameters and optimization results. The article presents the main climatic parameters for the study of the focusing solar collector, as well as the parameters of the collector itself and the main dependencies that determine its efficiency and losses. The place of integration of the focusing solar collector into the gas turbine plant was described and justified. (Results and discussion) Hybrid solar micro-gas turbine installations based on micro-gas turbine engines of a simple cycle, a simple cycle with heat recovery, a simple cycle with a turbocharger utilizer, a simple cycle with a turbocharger utilizer and heat recovery for tropical climate conditions were studied on the example of Abu Dhabi. (Conclusions) The most suitable configuration of micro-gas turbine engines for integrating a focusing solar collector is a combination of a simple cycle with a turbocharger utilizer and regeneration. The combination of micro-gas turbine engines of a simple cycle with a turbocharger heat recovery and heat recovery with an integrated focusing solar collector can relatively increase the average annual efficiency of fuel consumption of such installations in a tropical climate by 10-35 percent or more, while maintaining cogeneration capabilities.


Author(s):  
H. C. Eatock ◽  
M. D. Stoten

United Aircraft Corporation studied the potential costs of various possible gas turbine engines which might be used to reduce automobile exhaust emissions. As part of that study, United Aircraft of Canada undertook the preliminary design and performance analysis of high-pressure-ratio nonregenerated (simple cycle) gas turbine engines. For the first time, high levels of single-stage component efficiency are available extending from a pressure ratio less than 4 up to 10 or 12 to 1. As a result, the study showed that the simple-cycle engine may provide satisfactory running costs with significantly lower manufacturing costs and NOx emissions than a regenerated engine. In this paper some features of the preliminary design of both single-shaft and a free power turbine version of this engine are examined. The major component technology assumptions, in particular the high pressure ratio centrifugal compressor, employed for performance extrapolation are explained and compared with current technology. The potential low NOx emissions of the simple-cycle gas turbine compared to regenerative or recuperative gas turbines is discussed. Finally, some of the problems which might be encountered in using this totally different power plant for the conventional automobile are identified.


Author(s):  
Sankaran Ramakrishnan ◽  
Kwee-Yan Teh ◽  
Christopher F. Edwards

Increasing efficiency of gas turbine engines by way of irreversibility minimization has been the underlying objective in the development of a variety of simple, regenerative, and combined cycles. The approach thus far has been to conceptualize new cycles, or choose existing cycles, perform exergy analyses, and make modifications to minimize irreversibility. In this paper we take a fundamentally different approach by developing a thermodynamic framework that defines the principles governing the minimization of irreversibility and uses these principles to deduce an optimal architecture for simple-cycle gas turbine engines. No engine cycle/design is assumed in the beginning. The benefit of this approach is two-fold. First, it explains the factors affecting irreversibility in gas turbine engines. Second, it defines an optimal architecture for simple-cycle engines based on the chosen constraints (e.g., polytropic efficiency of compression and expansion processes, blade temperature limits, etc.) having an efficiency greater than any preconceived cycle/architecture with the same constraints.


Author(s):  
A.V. DOLOGLONYAN ◽  
D.S. STREBKOV ◽  
V.T. MATVIIENKO ◽  
I.N. STACENKO

The subject of this article is the use of organic Rankine cycle (ORC) plants to improve the efficiency of vacuum cycles of micro-gas turbine engines (VMGTE). Combined installations VMGTE with ORC of a simple cycle and with heat regeneration have been investigated. The optimal parameters of the plants in the mode of the switching heat flow are found for various working fluids of the ORC. It has been established that the combination of VMGTE with ORC allows to increase the efficiency of plants by 4.2 ... 12.5%, while maintaining cogeneration capabilities. Due to the design features, the combined plant based on a simple cycle can be used for the utilization of secondary energy resources of any potential.


Author(s):  
Thomas L. Ragland

With the increasing need for more efficient industrial gas turbine engines, the recuperated engine cycle is being considered as a means of meeting these needs. This paper discusses a recuperated cycle design that is optimized to take full advantage of the recuperator but at the same time accommodate the real world market constraints of reliability, durability and cost. Current simple cycle industrial engines are evolving to very high pressure ratios and high firing temperatures in order to reach cycle efficiencies in the 37% to 39% range. Some simple cycle industrial gas turbines with lower cycle pressure ratios and firing temperatures have been modified so a recuperated option can be added. Although the addition of a recuperator to these engines does improve cycle efficiency, levels of only the 33% to 35% range are reached. This is mainly due to the fact that the resulting cycles are not optimized for a recuperator. An engine cycle that is optimized around a recuperator could obtain cycle efficiencies in the 43% to 45% range. Fortunately, this cycle optimizes at low pressure ratios and modest firing temperatures which results in lower cost components which tend to offset the additional cost of the recuperator.


Author(s):  
Elkin I. Gutie´rrez Vela´squez ◽  
Marco A. R. Nascimento ◽  
Ruben A. Miranda Carrillo ◽  
Newton R. Moura

Currently, industrial countries generate most of their electricity in large centralized plants. These plants have excellent economies of scale, however, they usually transmit electricity through long distances and can affect the environment. Distributed generation is another approach that reduces the amount of lost energy during transmission as the electricity is generated closely to where it is used, this way reducing the size and number of power lines to be constructed. The current technologies in DG include small gas turbine engines, internal combustion reciprocating engines, photovoltaic panels, fuel cells, solar thermal conversion and Stirling engines using fossil fuels and bio-fuels. Among them, small gas turbine engines are a promising technology for the implementation of distributed generation systems in the near future. This work presents the results of the preliminary compressor design of a simple cycle gas turbine engine, obtained with the use of a straightforward one-dimensional FORTRAN code, which enables to calculate the main characteristics of a centrifugal compressor by means of the application of non-dimensional parameters, with a vast reduction of computational time. The results obtained were compared with a CFD analysis and with experimental results taken from specialized literature; therefore a reasonable agreement was reached. The main contribution of this paper is to demonstrate that by the use of a simple code it is feasible to obtain fairly close results in comparison with those which can be obtained by laborious iterative processes such as those developed through the analysis using CFD techniques.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1988 ◽  
Author(s):  
James C. Birdsall ◽  
William J. Davies ◽  
Richard Dixon ◽  
Matthew J. Ivary ◽  
Gary A. Wigell

Sign in / Sign up

Export Citation Format

Share Document