Increasing high temperature oxidation and corrosion resistance of graphite and carbon-fiber-reinforced carbon by deposition of a low pressure chemically vapor-deposited silicon carbide coating

1992 ◽  
Vol 54-55 ◽  
pp. 13-18
Author(s):  
J Scheiffarth
2020 ◽  
Vol 10 (6) ◽  
pp. 1924 ◽  
Author(s):  
Yu Sun ◽  
Yuguo Sun

This paper focuses on the preparation of boron-containing phenolic resin (BPR)-derived carbon modified three-dimensional (3D) needled carbon fiber reinforced silicon oxycarbide (SiOC) composites through a simple precursor infiltration and pyrolysis process (PIP), and the influence of PIP cycle numbers on the microstructure, mechanical, high-temperature oxidation resistance. The electromagnetic wave (EMW) absorption properties of the composites were investigated for the first time. The pyrolysis temperature played an important role in the structural evolution of the SiOC precursor, as temperatures above 1400 °C would cause phase separation of the SiOC and the formation of silicon carbide (SiC), silica (SiO2), and carbon. The density and compressive strength of the composites increased as the PIP cycle number increased: the value for the sample with 3 PIP cycles was 0.77 g/cm3, 7.18 ± 1.92 MPa in XY direction and 9.01 ± 1.25 MPa in Z direction, respectively. This composite presented excellent high-temperature oxidation resistance and thermal stability properties with weight retention above 95% up to 1000 °C both under air and Ar atmosphere. The minimal reflection loss (RLmin) value and the widest effective absorption bandwidth (EAB) value of as-prepared composites was −24.31 dB and 4.9 GHz under the optimization condition for the sample with 3 PIP cycles. The above results indicate that our BPR-derived carbon modified 3D needled carbon fiber reinforced SiOC composites could be considered as a promising material for practical applications.


Sign in / Sign up

Export Citation Format

Share Document