The effect of EB PVD coatings on structure and properties of nickel-base superalloy for gas turbine blades

1996 ◽  
Vol 78 (1-3) ◽  
pp. 113-123 ◽  
Author(s):  
A.A. Tchizhik ◽  
A.I. Rybnikov ◽  
I.S. Malashenko ◽  
S.A. Leontiev ◽  
A.S. Osyka
2006 ◽  
Vol 321-323 ◽  
pp. 509-512 ◽  
Author(s):  
Jung Seob Hyun ◽  
Gee Wook Song ◽  
Young Shin Lee

A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue (TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. High temperature out-of-phase and in-phase TMF experiments in strain control were performed on superalloy materials. Temperature interval of 450-850 was applied to thermo-mechanical fatigue tests. The stress-strain response and the life cycle of the material were measured during the test. The mechanisms of TMF damage is discussed based on the microstructural evolution during TMF. The plastic strain energy based life pediction models were applied to the stress-strain history effect on the thermo-mechanical fatigue lives.


2017 ◽  
Vol 891 ◽  
pp. 433-437 ◽  
Author(s):  
Nattapol Kontikame ◽  
Sureerat Polsilapa ◽  
Panyawat Wangyao

This research work has an aim to investigate the effect of precipitation aging temperatures of 845°C, 865°C, 885°C and 905°C for 24 hours after solutioning treatment at temperature of 1145°C for 4 hours on final microstructure of cast nickel base superalloy, grade Inconel 738, which is used as a material for turbine blades in land base gas turbine engines to generate electricity in power plants. Further interesting is also extended to study and evaluate the phase stability of precipitated gamma prime particles after long-term heating at tempeatures of 900°C and 1000°C for 200 hours of all received final microstructures after various reheat treatment conditions. From all obtained results, it was found that the higher precipitation aging temperatures provided the more coarsening size of both coarse and fine gamma prime particles. Furthermore, after long-term exposure at high temperatures, this resulted in an increasing of both area density and size of gamma prime particles.


2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


Author(s):  
Björn Buchholz ◽  
Uwe Gampe ◽  
Tilmann Beck

The growing share of power generation from volatile sources such as wind and photovoltaics requires fossil fuel fired power generation units be available and capable of high load flexibility to adjust to the changing capacity of the electrical grid. Additionally, back-up units with quick start capability and energy storage technologies are needed to fill the power shortfall when volatile sources are not available. Gas turbine and combined-cycle gas and steam turbine power plants are able to meet these demands. However, safe component design for improved cycling capability, combined with optimum utilization of material regarding its mechanical properties, requires design procedures and lifing models for the complex loadings resulting from this increased volatility of power demand. Since hot gas path components like turbine blades and vanes are highly stressed by cyclic thermal and mechanical loadings, resulting Thermo-Mechanical Fatigue (TMF), life prediction models such as the classic strain-life Coffin-Manson-Basquin method do not capture the influences of thermal cycling satisfyingly. Advanced TMF prediction models are thus necessary to accurately predict the durability of hot section components. This paper addresses life prediction of the Nickel-base superalloy René 80 at elevated temperature for various loading conditions. For this purpose, isothermal Low Cycle Fatigue (LCF) and corresponding TMF tests, with various temperature ranges and thermal-mechanical phase shifts, have been performed. On this basis, a systematic approach has been developed which allows assessing the key influences on TMF life. Moreover, a generalized model for fatigue has been derived, which has the potential to predict TMF life on the basis of LCF data. The knowledge gained from the model development allows an improved life prediction and better utilization of the material capabilities. Additionally, the required number of material tests for a general insight in the materials behaviour can be reduced significantly.


Sign in / Sign up

Export Citation Format

Share Document