Analytical and numerical calculation of strain energy release rate during delamination growth in a carbon epoxy laminate

1991 ◽  
Vol 42 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Jacques Renard ◽  
Florence Roudolff
1999 ◽  
Vol 121 (3) ◽  
pp. 381-385 ◽  
Author(s):  
D. R. Atodaria ◽  
S. K. Putatunda ◽  
P. K. Mallick

The purpose of this study is to investigate the delamination growth behavior of a glass fabric reinforced laminated composite under Mode I fatigue loading and to examine the applicability of a new fatigue crack growth rate model to this material. In this study, double contilever beam specimens were subjected to tension-tension cyclic loads with three different load ratios and the delamination growth rate was measured using the compliance method. The delamination growth rate was related to the strain energy release rate during fatigue cycling by a power law equation that takes into account not only the effect of the strain energy release rate range, but also the effect of delamination growth at various stages of loading using a weight average strain energy release rate. It was observed that this new model can represent the delamination growth rate of the fabric reinforced laminated composite at three different load ratios in a single unifying curve.


1964 ◽  
Vol 86 (4) ◽  
pp. 693-697 ◽  
Author(s):  
R. G. Forman ◽  
A. S. Kobayashi

This paper presents theoretical studies on the axial rigidities in strips with circular and elliptical perforations and subjected to uniaxial tension. Greenspan’s original derivations on these axial rigidities [2] were improved by using the elasticity solutions by Howland [6] and Ishida [7] for infinite strips with circular and elliptical perforations, respectively. Finally, the correction factors for centrally notched strips subjected to uniaxial tension were rederived from the above results following the energy approach by Irwin and Kies [3].


Author(s):  
Arash Kheyraddini Mousavi ◽  
Seyedhamidreza Alaie ◽  
Maheshwar R. Kashamolla ◽  
Zayd Chad Leseman

An analytical Mixed Mode I & II crack propagation model is used to analyze the experimental results of stiction failed micro cantilevers on a rigid substrate and to determine the critical strain energy release rate (adhesion energy). Using nonlinear beam deflection theory, the shape of the beam being peeled off of a rigid substrate can be accurately modeled. Results show that the model can fit the experimental data with an average root mean square error of less than 5 ran even at relatively large deflections which happens in some MEMS applications. The effects of surface roughness and/or debris are also explored and contrasted with perfectly (atomically) flat surfaces. Herein it is shown that unlike the macro-scale crack propagation tests, the surface roughness and debris trapped between the micro cantilever and the substrate can drastically effect the energy associated with creating unit new surface areas and also leads to some interesting phenomena. The polysilicon micro cantilever samples used, were fabricated by SUMMIT V™ technology in Sandia National Laboratories and were 1000 μm long, 30 μm wide and 2.6 μm thick.


2021 ◽  
Vol 1046 ◽  
pp. 23-28
Author(s):  
Victor Iliev Rizov

The present paper deals with an analytical study of the time-dependent delamination in a multilayered inhomogeneous cantilever beam with considering of the loading history. The multilayered beam exhibits creep behaviour that is treated by using a non-linear stress-strain-time relationship. The material properties are continuously distributed along the thickness and length of the layers. The external loading is applied in steps in order to describe the loading history. The analysis reveals that during each step of the loading, the strain energy release rate increases with time. The influences of crack length and location on the time-dependent strain energy release rate are also investigated.


Sign in / Sign up

Export Citation Format

Share Document