The role of the fiber/matrix interface in the first matrix cracking of fiber-reinforced brittle-matrix composites

1994 ◽  
Vol 51 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Takayuki Suzuki ◽  
Tatsuya Miyajima ◽  
Mototsugu Sakai
1993 ◽  
Vol 115 (3) ◽  
pp. 314-318 ◽  
Author(s):  
S. M. Spearing ◽  
F. W. Zok

A computer simulation of multiple cracking in fiber-reinforced brittle matrix composites has been conducted, with emphasis on the role of the matrix flaw distribution. The simulations incorporate the effect of bridging fibers on the stress required for cracking. Both short and long (steady-state) flaws are considered. Furthermore, the effects of crack interactions (through the overlap of interface slip lengths) are incorporated. The influence of the crack distribution on the tensile response of such composites is also examined.


Ceramics ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 327-346 ◽  
Author(s):  
Longbiao Li

In this paper, the effect of cyclic fatigue loading on matrix multiple fracture of fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the critical matrix strain energy (CMSE) criterion. The relationships between multiple matrix cracking, cyclic fatigue peak stress, fiber/matrix interface wear, and debonding are established. The effects of fiber volume fraction, fiber/matrix interface shear stress, and applied cycle number on matrix multiple fracture and fiber/matrix interface debonding and interface wear are discussed. Comparisons of multiple matrix cracking with/without cyclic fatigue loading are analyzed. The experimental matrix cracking of unidirectional SiC/CAS, SiC/SiC, SiC/Borosilicate, and mini-SiC/SiC composites with/without cyclic fatigue loading are predicted.


1988 ◽  
Vol 120 ◽  
Author(s):  
M. D. Thouless ◽  
O. Sbaizero ◽  
E. Bischoff ◽  
E. Y. Luh

AbstractThe toughness of ceramic-matrix composites is strongly influenced by fiber pull-out. The extent of the pull-out depends upon the properties of the fiber and the fiber/matrix interface. Samples of a SiC/LAS composite were subjected to different heat treatments in order to systematically vary these properties. The predicted distribution of the fiber pull-out lengths was calculated by combining a shear lag analysis with Weibull statistics for the fiber strengths. Comparison of the analysis with experiments and microstructural observations contribute to an understanding of the role of the fiber/matrix interface upon the mechanical properties.


Author(s):  
Li Longbiao

Abstract In this paper, the thermomechanical fatigue (TMF) of fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the hysteresis-based damage parameter. The micro stress field of the damaged CMCs of matrix cracking and fiber/matrix interface debonding is obtained considering the temperature-dependent fiber/matrix interface shear stress. The fiber/matrix interface debonded length and unloading/reloading slip length are determined using the fracture mechanics approach. Based on the damage mechanisms of fiber sliding relative to the matrix in the interface debonded region, the TMF hysteresis loops models and hysteresis-based damage parameters are developed for the partially and completely debonding to analyze the damage evolution inside of fiber-reinforced CMCs. The effects of temperature, phase angle and loading sequences on the damage development of SiC/SiC composite are discussed. When TMF temperature range increases, the fatigue hysteresis loops area, residual strain increase, and the hysteresis modulus decreases, due to the increase of the fiber/matrix interface slip length. Under TMF loading, the phase angle affects the interface debonding and sliding range, and the hysteresis loops shape, location and area of the fiber-reinforced CMCs. The experimental TMF damage evolution of 2D SiC/SiC and cross-ply SiC/MAS composites are predicted.


Sign in / Sign up

Export Citation Format

Share Document