Measurement and analysis of fiber-matrix interface strength of carbon fiber-reinforced phenolic resin matrix composites

2013 ◽  
Vol 48 (11) ◽  
pp. 1303-1311 ◽  
Author(s):  
JJ Sha ◽  
JX Dai ◽  
J Li ◽  
ZQ Wei ◽  
J-M Hausherr ◽  
...  
Author(s):  
Li Longbiao

Abstract In this paper, the thermomechanical fatigue (TMF) of fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the hysteresis-based damage parameter. The micro stress field of the damaged CMCs of matrix cracking and fiber/matrix interface debonding is obtained considering the temperature-dependent fiber/matrix interface shear stress. The fiber/matrix interface debonded length and unloading/reloading slip length are determined using the fracture mechanics approach. Based on the damage mechanisms of fiber sliding relative to the matrix in the interface debonded region, the TMF hysteresis loops models and hysteresis-based damage parameters are developed for the partially and completely debonding to analyze the damage evolution inside of fiber-reinforced CMCs. The effects of temperature, phase angle and loading sequences on the damage development of SiC/SiC composite are discussed. When TMF temperature range increases, the fatigue hysteresis loops area, residual strain increase, and the hysteresis modulus decreases, due to the increase of the fiber/matrix interface slip length. Under TMF loading, the phase angle affects the interface debonding and sliding range, and the hysteresis loops shape, location and area of the fiber-reinforced CMCs. The experimental TMF damage evolution of 2D SiC/SiC and cross-ply SiC/MAS composites are predicted.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3850 ◽  
Author(s):  
Hao Dou ◽  
Yunyong Cheng ◽  
Wenguang Ye ◽  
Dinghua Zhang ◽  
Junjie Li ◽  
...  

Three-dimensional (3D) printing continuous carbon fiber-reinforced polylactic acid (PLA) composites offer excellent tensile mechanical properties. The present study aimed to research the effect of process parameters on the tensile mechanical properties of 3D printing composite specimens through a series of mechanical experiments. The main printing parameters, including layer height, extrusion width, printing temperature, and printing speed are changed to manufacture specimens based on the modified fused filament fabrication 3D printer, and the tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites are presented. By comparing the outcomes of experiments, the results show that relative fiber content has a significant impact on mechanical properties and the ratio of carbon fibers in composites is influenced by layer height and extrusion width. The tensile mechanical properties of continuous carbon fiber-reinforced composites gradually decrease with an increase of layer height and extrusion width. In addition, printing temperature and speed also affect the fiber matrix interface, i.e., tensile mechanical properties increase as the printing temperature rises, while the tensile mechanical properties decrease when the printing speed increases. Furthermore, the strengthening mechanism on the tensile mechanical properties is that external loads subjected to the components can be transferred to the carbon fibers through the fiber-matrix interface. Additionally, SEM images suggest that the main weakness of continuous carbon fiber-reinforced 3D printing composites exists in the fiber-matrix interface, and the main failure is the pull-out of the fiber caused by the interface destruction.


2013 ◽  
Vol 785-786 ◽  
pp. 209-213
Author(s):  
Qi Zhong Huang ◽  
Zhao Hui Hu

Water absorption behavior and mechanical properties variation of the carbon fiber reinforced epoxy matrix composites (CFRP) immersed into artificial seawater were investigated by experiments. The rate of water absorption of the composite specimens is gradually reducing as the duality of immersion increasing. Due to the reversible and irreversible changes in the resin matrix and the failure of the fiber/matrix interface, the tensile strength, the flexural strength, and the ILSS of the composite specimens after 70 days immersion decreased 9.3%, 13%, and 17% respectively. And the tensile modulus and the flexural modulus the specimens after desorption were 83% and 70% of the original state, respectively


Sign in / Sign up

Export Citation Format

Share Document