Ocean tides and tectonic plate motions in high precision orbit determination

1990 ◽  
Vol 10 (3-4) ◽  
pp. 229-238 ◽  
Author(s):  
J.M. Dow
GPS Solutions ◽  
2020 ◽  
Vol 24 (4) ◽  
Author(s):  
Xinglong Zhao ◽  
Shanshi Zhou ◽  
Ying Ci ◽  
Xiaogong Hu ◽  
Jianfeng Cao ◽  
...  

2006 ◽  
Vol 9 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Zhao Qile ◽  
Liu Jingnan ◽  
Ge Maorong

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qinglin Yang ◽  
Weijing Zhou ◽  
Hao Chang

In order to enable the micro-nanosatellites equipped with microthrusters to better complete various space applications, it is necessary to estimate the thrust performance of the microthrusters in real-time on orbit. This paper proposes a real-time on-orbit estimation method for microthrust based on high-precision orbit determination. By establishing a high-precision orbit dynamic model, the microthrust generated by a microthruster is modeled as a first-order Markov model, combined with a high-precision GNSS measuring device, and the satellite position is obtained through the cubature Kalman filter algorithm, velocity, and thrust real-time on-orbit estimates. For a thrust of 100 μN, the error accuracy of the on-orbit estimation is 3.98%; for a thrust of 500 μN, the error accuracy is 1.79%; for a thrust of 5 mN, the error accuracy can be reduced to 1.43%; and when the thrust is 500 μN, the accuracy of orbit determination is 16 cm. This method solves the problem that the traditional on-orbit thrust estimation method cannot perform real-time on-orbit estimation of microthrust on the order of hundreds of μN. The real-time on-orbit estimation of microthrust of micro-nanosatellites equipped with microthrusters of the order of hundreds of micronewtons or even several mN to tens of mN has certain reference value.


2003 ◽  
Vol 31 (8) ◽  
pp. 1953-1958 ◽  
Author(s):  
R. Zandbergen ◽  
M. Otten ◽  
P.L. Righetti ◽  
D. Kuijper ◽  
J.M. Dow

Author(s):  
Tomoyuki HONDA ◽  
Toshinori KUWAHARA ◽  
Shinya FUJITA ◽  
Alperen Ahmed PALA ◽  
Yoshihiko SHIBUYA ◽  
...  

1975 ◽  
Vol 29 (1-4) ◽  
pp. 1-7 ◽  
Author(s):  
P.L. Bender ◽  
E.C. Silverberg
Keyword(s):  

2020 ◽  
Author(s):  
Hongbo Tan ◽  
Chongyong Shen ◽  
Guiju Wu

<p>Solid Earth is affected by tidal cycles triggered by the gravity attraction of the celestial bodies. However, about 70% the Earth is covered with seawater which is also affected by the tidal forces. In the coastal areas, the ocean tide loading (OTL) can reach up to 10% of the earth tide, 90% for tilt, and 25% for strain (Farrell, 1972). Since 2007, a high-precision continuous gravity observation network in China has been established with 78 stations. The long-term high-precision tidal data of the network can be used to validate, verifying and even improve the ocean tide model (OTM).</p><p>In this paper, tidal parameters of each station were extracted using the harmonic analysis method after a careful editing of the data. 8 OTMs were used for calculating the OTL. The results show that the Root-Mean-Square of the tidal residuals (M<sub>0</sub>) vary between 0.078-1.77 μgal, and the average errors as function of the distance from the sea for near(0-60km), middle(60-1000km) and far(>1000km) stations are 0.76, 0.30 and 0.21 μgal. The total final gravity residuals (Tx) of the 8 major constituents (M<sub>2</sub>, S<sub>2</sub>, N<sub>2</sub>, K<sub>2</sub>, K<sub>1</sub>, O<sub>1</sub>, P<sub>1</sub>, Q<sub>1</sub>) for the best OTM has amplitude ranging from 0.14 to 3.45 μgal. The average efficiency for O<sub>1</sub> is 77.0%, while 73.1%, 59.6% and 62.6% for K<sub>1</sub>, M<sub>2</sub> and Tx. FES2014b provides the best corrections for O<sub>1</sub> at 12 stations, while SCHW provides the best for K<sub>1 </sub><sub>,</sub>M<sub>2</sub>and Tx at 12,8and 9 stations. For the 11 costal stations, there is not an obvious best OTM. The models of DTU10, EOT11a and TPXO8 look a litter better than FES2014b, HAMTIDE and SCHW. For the 17 middle distance stations, SCHW is the best OTM obviously. For the 7 far distance stations, FES2014b and SCHW model are the best models. But the correction efficiency is worse than the near and middle stations’.</p><p>The outcome is mixed: none of the recent OTMs performs the best for all tidal waves at all stations. Surprisingly, the Schwiderski’s model although is 40 years old with a coarse resolution of 1° x 1° is performing relative well with respect to the more recent OTM. Similar results are obtained in Southeast Asia (Francis and van Dam, 2014). It could be due to systematic errors in the surroundings seas affecting all the ocean tides models. It's difficult to detect, but invert the gravity attraction and loading effect to map the ocean tides in the vicinity of China would be one way.</p>


Sign in / Sign up

Export Citation Format

Share Document