Symbiosis and competition among sulfate reduction, filamentous sulfur, denitrification, and poly-p accumulation bacteria in the anaerobic-oxic activated sludge of a municipal plant

1996 ◽  
Vol 34 (5-6) ◽  
2002 ◽  
Vol 46 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
R. Yamamoto-Ikemoto ◽  
T. Komori ◽  
S. Matsui

Iron oxidation and reduction were examined using the activated sludge from a municipal plant. Iron contents of the activated sludge were 1–2%. Iron oxidation rates were correlated with the initial iron concentrations. Iron reducing rates could be described by the Monod equation. The effects of iron reducing bacteria on sulfate reduction, denitrification and poly-P accumulation were examined. Iron reduction suppressed sulfate reduction by competing with hydrogen produced from protein. Denitrification was outcompeted with iron reduction and sulfate reduction. These phenomena could be explained thermodynamically. Poly-P accumulation was also suppressed by denitrification. The activity of iron reduction was relatively high.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 119-128 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
E. J. Bosque-Hamilton

Symbiosis and competition were examined among sulfate reducing bacteria (SRB), filamentous sulfur bacteria (FSB), denitrification bacteria (DNB) and poly-P accumulation bacteria (PAB) in the activated sludge of a municipal plant operated under anaerobic-oxic conditions. Batch experiments were carried out using settled sewage from the same plant as the substrate under several conditions. Under oxic conditions, both sulfate reduction and sulfide oxidation occurred simultaneously, making a symbiotic relationship of SRB and FSB for establishment of a sulfur cycle sustaining the energy requirements. Under anoxic conditions, denitrification was dominant because DNB outcompeted PAB and SRB for organic acids. Under anaerobic conditions, phosphate release and sulfate reduction occurred simultaneously. SRB produced for moles of acetate from four moles of propionate and/or unknown substances by reduction of three moles of sulfate. PAB competed with sulfate-reducing bacteria for organic acids such as propionate. However, PAB utilized acetate produced by SRB.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 599-603 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
Edja. Kofi. Bosque-Hamilton

The interactions between filamentous sulfur bacteria (FSB), sulfate reducing bacteria (SRB) and poly-P accumulating bacteria (PAB) in the activated sludge of a municipal plant operated under anaerobic-oxic conditions were examined in batch experiments using return sludge (RAS) and settled sewage. Phosphate release and sulfate reduction occurred simultaneously under anaerobic conditions. SRB were more sensitive to temperature changes than PAB. SRB played an important role in the decomposition of propionate to acetate. When the sulfate reduction rates were high, there was a tendency for the maximum release of phosphate also to be high. This was explained by the fact that PAB utilized the acetate produced by SRB. Sulfur oxidizing bacteria were sensitive to temperature change. When the sulfate reduction rate was high, the sulfide oxidizing rate was also high and filamentous bulking occurred. The results showed that sulfate reduction was a cause of filamentous bulking due to Type 021N that could utilize reduced sulfur.


1994 ◽  
Vol 30 (6) ◽  
pp. 221-227 ◽  
Author(s):  
Y. Ubukata ◽  
S. Takii

Many bacteria considered to be phosphate removing bacteria (PRB) have previously been isolated from phosphate removing activated sludge (PRAS). However, these bacteria have never exhibited the typical function of PRB which take up excessive phosphate (P) in aerobic conditions and release P with a concomitant uptake of organic substrates in anaerobic conditions. We hypothesized that the enzyme system responsible for excess P accumulation (EPA) should be inducible, because PRB can take up organic substrates anaerobically in spite of being obligate aerobes. Therefore, PRB cells grown aerobically have to be additionally treated with alternating anaerobic incubation with organic substrates and aerobic incubation without organic substrates to exhibit the above typical function. We succeeded in the first isolation of a strain of true PRB by this induction method. The isolate is a Gram-positive coccus and its generation time is approximately 12 hours. The anaerobic/aerobic incubation cycle was required at least two times (2 days) to induce the ability of EPA for PRB. The velocity of P removal in the aerobic phase was decreased to approximately half by the existence of organic substrates. Therefore, it is recommended that organic compounds be removed during the anaerobic phase in PRAS systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250283
Author(s):  
Shulei Liu ◽  
Yasong Chen ◽  
Lin Xiao

Wastewater treatment plants (WWTPs) are important for pollutant removal from wastewater, elimination of point discharges of nutrients into the environment and water resource protection. The anaerobic/anoxic/oxic (A2/O) process is widely used in WWTPs for nitrogen removal, but the requirement for additional organics to ensure a suitable nitrogen removal efficiency makes this process costly and energy consuming. In this study, we report mixotrophic denitrification at a low COD (chemical oxygen demand)/TN (total nitrogen) ratio in a full-scale A2/O WWTP with relatively high sulfate in the inlet. Nitrogen and sulfur species analysis in different units of this A2/O WWTP showed that the internal sulfur cycle of sulfate reduction and reoxidation occurred and that the reduced sulfur species might contribute to denitrification. Microbial community analysis revealed that Thiobacillus, an autotrophic sulfur-oxidizing denitrifier, dominated the activated sludge bacterial community. Metagenomics data also supported the potential of sulfur-based denitrification when high levels of denitrification occurred, and sulfur oxidation and sulfate reduction genes coexisted in the activated sludge. Although most of the denitrification genes were affiliated with heterotrophic denitrifiers with high abundance, the narG and napA genes were mainly associated with autotrophic sulfur-oxidizing denitrifiers. The functional genes related to nitrogen removal were actively expressed even in the unit containing relatively highly reduced sulfur species, indicating that the mixotrophic denitrification process in A2/O could overcome not only a shortage of carbon sources but also the inhibition by reduced sulfur of nitrification and denitrification. Our results indicate that a mixotrophic denitrification process could be developed in full-scale WWTPs and reduce the requirement for additional carbon sources, which could endow WWTPs with more flexible and adaptable nitrogen removal.


1994 ◽  
Vol 30 (11) ◽  
pp. 201-210 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori

Effects of anoxic-oxic conditions on the growth of sulfate reduction, poly-P accumulation and filamentous sulfur bacteria were examined in the laboratory scale sequential batch reactors. In the anoxic-oxic conditions, denitrification bacteria are dominant. The growth of sulfate reducing bacteria and poly-P accumulating bacteria was suppressed. The number of sulfate reducing bacteria in the activated sludge was below 104 MPN/g MLSS, and the sulfate reduction rate was very low. Filamentous bulking was also suppressed. On the other hand, when nitrate was removed from the artificial wastewater, sulfate reducing bacteria could grow predominantly in the anaerobic conditions. The number of sulfate reducing bacteria was about 106∼107 MPN/g MLSS and the sulfate reduction rate increased (0.17 ∼ 0.21 g SO4/g MLSS·hr). Filamentous bacteria Type 021N increased over 103 cm/mg MLSS. Sodium molybdate was added to the artificial wastewater in order to prevent sulfate reduction. When the concentration of sodium molybdate increased to 980 mg/L, the number of sulfate reducing bacteria decreased to 103 ∼ 104 MPN/g MLSS and the sulfate reduction rate decreased. Filamentous bulking was completely suppressed in these conditions. These results show that sulfate reduction is a main trigger of the filamentous bulking due to Type 021N that can utilize reduced sulfur for an energy source.


2020 ◽  
Vol 400 ◽  
pp. 125885
Author(s):  
Aijuan Zhou ◽  
Hongyan Liu ◽  
Cristiano Varrone ◽  
Alimzhanova Shyryn ◽  
Zafiry Defemur ◽  
...  

1999 ◽  
Vol 65 (9) ◽  
pp. 4189-4196 ◽  
Author(s):  
Andreas Schramm ◽  
Cecilia M. Santegoeds ◽  
Helle K. Nielsen ◽  
Helle Ploug ◽  
Michael Wagner ◽  
...  

ABSTRACT A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2 −, NO3 −, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with15NO3 − and35SO4 2− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges.


2003 ◽  
Vol 46 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Kjeld Ingvorsen ◽  
Marianne Yde Nielsen ◽  
Catherine Joulian

Sign in / Sign up

Export Citation Format

Share Document