5S RNA-protein complexes released by EDTA treatment of 60S ribosomal subunits of Tetrahymena thermophila

Biochimie ◽  
1987 ◽  
Vol 69 (9) ◽  
pp. 975-982 ◽  
Author(s):  
F Hayes ◽  
M.F Guérin
1982 ◽  
Vol 60 (4) ◽  
pp. 490-496 ◽  
Author(s):  
Ross N. Nazar ◽  
Makoto Yaguchi ◽  
Gordon E. Willick

The ribosomal 5S RNA – protein complex appears to be an excellent model for studies on the evolution and structure of ribosomes. In eukaryotes this complex is composed of two components, the 5S rRNA and a single ribosomal protein which in yeast has a molecular weight of about 38 000. The primary protein-binding site is located in the 3′-end region of the 5S RNA together with a small portion of the 5′ end. The primary RNA-binding site appears to be situated in the C-terminal end of the protein (YL3 in yeast) but the binding specificity requires other structural elements in the N-terminal half of the molecule. When compared with prokaryotic 5S RNA – protein complexes, various physical and chemical studies suggest that the basic structure and interactions have been conserved in the course of evolution, but that the single larger eukaryotic 5S RNA binding protein has evolved through a fusion of genes for the multiple 5S RNA binding proteins in prokaryotes.


1985 ◽  
Vol 260 (21) ◽  
pp. 11781-11786
Author(s):  
R Kole ◽  
L D Fresco ◽  
J D Keene ◽  
P L Cohen ◽  
R A Eisenberg ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6287
Author(s):  
Hendrik Reuper ◽  
Benjamin Götte ◽  
Lucy Williams ◽  
Timothy J. C. Tan ◽  
Gerald M. McInerney ◽  
...  

Stress granules (SGs) are dynamic RNA–protein complexes localized in the cytoplasm that rapidly form under stress conditions and disperse when normal conditions are restored. The formation of SGs depends on the Ras-GAP SH3 domain-binding protein (G3BP). Formations, interactions and functions of plant and human SGs are strikingly similar, suggesting a conserved mechanism. However, functional analyses of plant G3BPs are missing. Thus, members of the Arabidopsis thaliana G3BP (AtG3BP) protein family were investigated in a complementation assay in a human G3BP knock-out cell line. It was shown that two out of seven AtG3BPs were able to complement the function of their human homolog. GFP-AtG3BP fusion proteins co-localized with human SG marker proteins Caprin-1 and eIF4G1 and restored SG formation in G3BP double KO cells. Interaction between AtG3BP-1 and -7 and known human G3BP interaction partners such as Caprin-1 and USP10 was also demonstrated by co-immunoprecipitation. In addition, an RG/RGG domain exchange from Arabidopsis G3BP into the human G3BP background showed the ability for complementation. In summary, our results support a conserved mechanism of SG function over the kingdoms, which will help to further elucidate the biological function of the Arabidopsis G3BP protein family.


2015 ◽  
Vol 16 (9) ◽  
pp. 22456-22472 ◽  
Author(s):  
Yangchao Dong ◽  
Jing Yang ◽  
Wei Ye ◽  
Yuan Wang ◽  
Chuantao Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document