Chain length effects in the excluded volume of polymer chains having a generalized molecular architecture

1979 ◽  
Vol 39 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Santosh K. Gupta ◽  
Anil Kumar ◽  
R. Goel
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1636
Author(s):  
Stella Afroditi Mountaki ◽  
Maria Kaliva ◽  
Konstantinos Loukelis ◽  
Maria Chatzinikolaidou ◽  
Maria Vamvakaki

Main chain polyesters have been extensively used in the biomedical field. Despite their many advantages, including biocompatibility, biodegradability, and others, these materials are rather inert and lack specific functionalities which will endow them with additional biological and responsive properties. In this work, novel pH-responsive main chain polyesters have been prepared by a conventional condensation polymerization of a vinyl functionalized diol with a diacid chloride, followed by a photo-induced thiol-ene click reaction to attach functional carboxylic acid side-groups along the polymer chains. Two different mercaptocarboxylic acids were employed, allowing to vary the alkyl chain length of the polymer pendant groups. Moreover, the degree of modification, and as a result, the carboxylic acid content of the polymers, was easily tuned by varying the irradiation time during the click reaction. Both these parameters, were shown to strongly influence the responsive behavior of the polyesters, which presented adjustable pKα values and water solubilities. Finally, the difunctional polyesters bearing the alkene and carboxylic acid functionalities enabled the preparation of cross-linked polyester films by chemically linking the pendant vinyl bonds on the polymer side groups. The biocompatibility of the cross-linked polymers films was assessed in L929 fibroblast cultures and showed that the cell viability, proliferation, and attachment were greatly promoted on the polyester surface, bearing the shorter alkyl chain length side groups and the higher fraction of carboxylic acid functionalities.


Polymer ◽  
1994 ◽  
Vol 35 (22) ◽  
pp. 4787-4793 ◽  
Author(s):  
A.J. Campbell ◽  
C.K.L. Davies
Keyword(s):  

2011 ◽  
Vol 115 (36) ◽  
pp. 17788-17798 ◽  
Author(s):  
María Alejandra Floridia Addato ◽  
Aldo A. Rubert ◽  
Guillermo A. Benítez ◽  
Mariano H. Fonticelli ◽  
Javier Carrasco ◽  
...  

Polymer-stabilized colloid particles are modelled theoretically by plane surfaces on to which polymer chains are adsorbed by one end only. Interactions between segments of the polymer are treated as an excluded volume effect. It is shown that for high surface densities the polymer distribution function exactly satisfies a one dimensional equation which is solved numerically for two values of excluded volume to give the polymer segment density distributions and the free energy of interaction for various separations of the plane surfaces. It is found that a positive value of excluded volume greatly increases the repulsive free energy compared with that for chains with zero excluded volume, particularly at large separation distances of the surfaces. Excluded volume effects must therefore play an important part in the stabilization of colloids by adsorbed polymer.


Langmuir ◽  
2004 ◽  
Vol 20 (2) ◽  
pp. 378-388 ◽  
Author(s):  
William J. Lokar ◽  
William A. Ducker

1971 ◽  
Vol 2 (3) ◽  
pp. 416-421 ◽  
Author(s):  
Kazuo Nagai ◽  
Toshihide Ishikawa

Sign in / Sign up

Export Citation Format

Share Document