A bimolecular mechanism for the cell size control of the cell cycle

Biosystems ◽  
1983 ◽  
Vol 16 (3-4) ◽  
pp. 297-305 ◽  
Author(s):  
L. Alberghina ◽  
E. Martegani ◽  
L. Mariani ◽  
G. Bortolan
2021 ◽  
Author(s):  
Chen Jia ◽  
Abhyudai Singh ◽  
Ramon Grima

Unlike many single-celled organisms, the growth of fission yeast cells within a cell cycle is not exponential. It is rather characterized by three distinct phases (elongation, septation and fission), each with a different growth rate. Experiments also show that the distribution of cell size in a lineage is often bimodal, unlike the unimodal distributions measured for the bacterium Escherichia coli. Here we construct a detailed stochastic model of cell size dynamics in fission yeast. The theory leads to analytic expressions for the cell size and the birth size distributions, and explains the origin of bimodality seen in experiments. In particular our theory shows that the left peak in the bimodal distribution is associated with cells in the elongation phase while the right peak is due to cells in the septation and fission phases. We show that the size control strategy, the variability in the added size during a cell cycle and the fraction of time spent in each of the three cell growth phases have a strong bearing on the shape of the cell size distribution. Furthermore we infer all the parameters of our model by matching the theoretical cell size and birth size distributions to those from experimental single cell time-course data for seven different growth conditions. Our method provides a much more accurate means of determining the cell size control strategy (timer, adder or sizer) than the standard method based on the slope of the best linear fit between the birth and division sizes. We also show that the variability in added size and the strength of cell size control of fission yeast depend weakly on the temperature but strongly on the culture medium.


2021 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

We examine five quantitative models of the cell-cycle and cell-size control in Escherichia coli and Bacillus subtilis that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder and the Independent Double Adder model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the Independent Double Adder model is the most likely model of the cell cycle. By showing that the Replication Double Adder model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the Independent Double Adder model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

We examine five quantitative models of the cell-cycle and cell-size control in Escherichia coli and Bacillus subtilis that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder (RDA) and the Independent Double Adder (IDA) model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the IDA model is the most likely model of the cell cycle. By showing that the RDA model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the IDA model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.


2018 ◽  
Author(s):  
Ambroise Lambert ◽  
Aster Vanhecke ◽  
Anna Archetti ◽  
Seamus Holden ◽  
Felix Schaber ◽  
...  

AbstractRod-shaped bacteria typically grow first via sporadic and dispersed elongation along their lateral walls, then via a combination of zonal elongation and constriction at the division site to form the poles of daughter cells. Although constriction comprises up to half of the cell cycle, its impact on cell size control and homeostasis has rarely been considered. To reveal the roles of cell elongation and constriction in bacterial size regulation during cell division, we captured the shape dynamics ofCaulobacter crescentuswith time-lapse structured illumination microscopy and used molecular markers as cell-cycle landmarks. We perturbed constriction rate using a hyperconstriction mutant or fosfomycin inhibition. We report that constriction rate contributes to both size control and homeostasis, by determining elongation during constriction, and by compensating for variation in pre-constriction elongation on a single-cell basis.


2000 ◽  
Vol 3 (6) ◽  
pp. 488-492 ◽  
Author(s):  
Eva Kondorosi ◽  
François Roudier ◽  
Emmanuel Gendreau

2019 ◽  
Vol 117 (9) ◽  
pp. 1728-1738 ◽  
Author(s):  
Giuseppe Facchetti ◽  
Benjamin Knapp ◽  
Fred Chang ◽  
Martin Howard

Author(s):  
David A Guertin ◽  
David M Sabatini

Sign in / Sign up

Export Citation Format

Share Document