Cell surface receptors for extracellular matrix components

Author(s):  
Steven K. Akiyama ◽  
Kazuhiro Nagata ◽  
Kenneth M. Yamada
2020 ◽  
Vol 77 (12) ◽  
pp. 3831-3841
Author(s):  
Lidia Muscariello ◽  
Barbara De Siena ◽  
Rosangela Marasco

AbstractThe gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1170
Author(s):  
Svenja Kleiser ◽  
Alexander Nyström

Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane—the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.


2016 ◽  
Vol 27 (19) ◽  
pp. 2885-2888 ◽  
Author(s):  
Charles H. Streuli

Integrins are cell surface receptors that bind cells to their physical external environment, linking the extracellular matrix to cell function. They are essential in the biology of all animals. In the late 1980s, we discovered that integrins are required for the ability of breast epithelia to do what they are programmed to do, which is to differentiate and make milk. Since then, integrins have been shown to control most other aspects of phenotype: to stay alive, to divide, and to move about. Integrins also provide part of the mechanism that allows cells to form tissues. Here I discuss how we discovered that integrins control mammary gland differentiation and explore the role of integrins as central architects of other aspects of cell behavior.


2007 ◽  
Vol 292 (1) ◽  
pp. H459-H474 ◽  
Author(s):  
Feilim Mac Gabhann ◽  
Aleksander S. Popel

The vascular endothelial growth factor (VEGF) family of cytokines is involved in the maintenance of existing adult blood vessels as well as in angiogenesis, the sprouting of new vessels. To study the proangiogenic activation of VEGF receptors (VEGFRs) by VEGF family members in skeletal muscle, we develop a computational model of VEGF isoforms (VEGF121, VEGF165), their cell surface receptors, and the extracellular matrix in in vivo tissue. We build upon our validated model of the biochemical interactions between VEGF isoforms and receptor tyrosine kinases (VEGFR-1 and VEGFR-2) and nonsignaling neuropilin-1 coreceptors in vitro. The model is general and could be applied to any tissue; here we apply the model to simulate the transport of VEGF isoforms in human vastus lateralis muscle, which is extensively studied in physiological experiments. The simulations predict the distribution of VEGF isoforms in resting (nonexercising) muscle and the activation of VEGFR signaling. Little of the VEGF protein in muscle is present as free, unbound extracellular cytokine; the majority is bound to the cell surface receptors or to the extracellular matrix. However, interstitial sequestration of VEGF165 does not affect steady-state receptor binding. In the absence of neuropilin, VEGF121 and VEGF165 behave similarly, but neuropilin enhances the binding of VEGF165 to VEGFR-2. This model is the first to study VEGF tissue distribution and receptor activation in human muscle, and it provides a platform for the design and evaluation of therapeutic approaches.


2019 ◽  
Vol 99 (4) ◽  
pp. 1655-1699 ◽  
Author(s):  
Michael Bachmann ◽  
Sampo Kukkurainen ◽  
Vesa P. Hytönen ◽  
Bernhard Wehrle-Haller

Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.


Sign in / Sign up

Export Citation Format

Share Document