The role of ATP citrate lyase in the transfer of acetyl groups in rat liver

1968 ◽  
Vol 158 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Yasushi Daikuhara ◽  
Takuo Tsunemi ◽  
Yoshiro Takeda
1966 ◽  
Vol 60 (5) ◽  
pp. 543-553 ◽  
Author(s):  
HIDEO INOUE ◽  
FUJIO SUZÚKI ◽  
KEIHACHI FUKUNISHI ◽  
KOZABURO ADACHI ◽  
YOSHIRO TAKEDA

1968 ◽  
Vol 106 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. G. Vernon ◽  
D G Walker

1. The activities of some enzymes involved in both the utilization of glucose (pyruvate kinase, ATP citrate lyase, NADP-specific malate dehydrogenase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP-specific isocitrate dehydrogenase, all present in the supernatant fraction of liver homogenates) and the formation of glucose by gluconeogenesis (glucose 6-phosphatase in the whole homogenate and fructose 1,6-diphosphatase, phosphopyruvate carboxylase, NAD-specific malate dehydrogenase and fumarase in the supernatant fraction) have been determined in rat liver around birth and in the postnatal period until the end of weaning. 2. The activities of those enzymes involved in the conversion of glucose into lipid are low during the neonatal period and increase with weaning. NADP-specific malate dehydrogenase first appears and develops at the beginning of the weaning period. 3. The marked increase in cytoplasmic phosphopyruvate carboxylase activity at birth is probably the major factor initiating gluconeogenesis at that time. 4. The results are discussed against the known changes in dietary supplies and the known metabolic patterns during the period of development.


1979 ◽  
Vol 99 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Mary B. FINKELSTEIN ◽  
Michael P. AURINGER ◽  
Laura A. HALPER ◽  
Tracy C. LINN ◽  
Manoranjan SINGH ◽  
...  

1985 ◽  
Vol 144 (2) ◽  
pp. 604-609 ◽  
Author(s):  
Christopher Wraight ◽  
Adrienne Day ◽  
Nicholas Hoogenraad ◽  
Robert Scopes

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Ryan Sestric ◽  
Vic Spicer ◽  
Oleg V Krokhin ◽  
Richard Sparling ◽  
David B Levin

ABSTRACT Oleaginous yeasts have the ability to store greater than 20% of their mass as neutral lipids, in the form of triacylglycerides. The ATP citrate lyase is thought to play a key role in triacylglyceride synthesis, but the relationship between expression levels of this and other related enzymes is not well understood in the role of total lipid accumulation conferring the oleaginous phenotype. We conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media. Total proteins extracted from cells collected during logarithmic and late stationary growth phases were analyzed by 1D liquid chromatography, followed by mass spectroscopy. The ATP citrate lyase enzyme was expressed at similar concentrations in both conditions, in both logarithmic and stationary phase, but many upstream and downstream enzymes showed drastically different expression levels. In non-lipogenic conditions, several pyruvate enzymes were expressed at higher concentration. These enzymes, especially the pyruvate decarboxylase and pyruvate dehydrogenase, may be regulating carbon flux away from central metabolism and reducing the amount of citrate being produced in the mitochondria. While crucial for the oleaginous phenotype, the constitutively expressed ATP citrate lyase appears to cleave citrate in response to carbon flux upstream from other enzymes creating the oleaginous phenotype.


1967 ◽  
Vol 26 (5) ◽  
pp. 602-608 ◽  
Author(s):  
Hideo Inoue ◽  
Fujio Suzuki ◽  
Hiroaki Tanioka ◽  
Yoshiro Takeda

2006 ◽  
Vol 188 (18) ◽  
pp. 6544-6552 ◽  
Author(s):  
Wonduck Kim ◽  
F. Robert Tabita

ABSTRACT ATP-citrate lyase (ACL) is an essential enzyme of the reductive tricarboxylic acid (RTCA) pathway of CO2 assimilation. The RTCA pathway occurs in several groups of autotrophic prokaryotes, including the green sulfur bacteria. ACL catalyzes the coenzyme A (CoA)-dependent and MgATP-dependent cleavage of citrate into oxaloacetate and acetyl-CoA, representing a key step in the RTCA pathway. To characterize this enzyme from the green sulfur bacterium Chlorobium tepidum and determine the role of its two distinct polypeptide chains, recombinant holo-ACL as well as its two individual subunit polypeptides were synthesized in Escherichia coli. The recombinant holoenzyme, prepared from coexpressed large and small ACL genes, and the individual large and small subunit polypeptides, prepared from singly expressed genes, were all purified to homogeneity to high yield. Purified recombinant holo-ACL was isolated at high specific activity, and its k cat was comparable to that of previously prepared native C. tepidum ACL. Moreover, the purified recombinant large and small subunit polypeptides were able to reconstitute the holo-ACL in vitro, with activity levels approaching that of recombinant holo-ACL prepared from coexpressed genes. Stoichiometric amounts of each subunit protein were required to maximize the activity and form the most stable structure of reconstituted holo-ACL. These results suggested that this reconstitution system could be used to discern the catalytic role of specific amino acid residues on each subunit. Reconstitution and mutagenesis studies together indicated that residues of each subunit contributed to different aspects of the catalytic mechanism, suggesting that both subunit proteins contribute to the active site of C. tepidum ACL.


Sign in / Sign up

Export Citation Format

Share Document