Mitochondrial gene expression in Saccharomyces cerevisiae. IV. Effects of yeast cytosol on mitochondrial protein synthesis, degradation, and respiration

1994 ◽  
Vol 1201 (2) ◽  
pp. 235-244 ◽  
Author(s):  
E MCKEE
2018 ◽  
Vol 2 ◽  
pp. 116
Author(s):  
Fei Gao ◽  
Maria Wesolowska ◽  
Reuven Agami ◽  
Koos Rooijers ◽  
Fabricio Loayza-Puch ◽  
...  

Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNAPhe whilst in humans it is mt-tRNAVal. We have previously shown that when a mutation in mt-tRNAVal causes very low steady state levels, there is preferential recruitment of mt-tRNAPhe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNAPhe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNAPhe containing mitoribosomes with those of controls that integrate mt-tRNAVal revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5’ leader sequences, except in the two bicistronic RNA units, RNA7 and RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNAVal cell line suggest that despite mt-tRNAPhe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.


2020 ◽  
Vol 21 (11) ◽  
pp. 3820 ◽  
Author(s):  
Jia Xin Tang ◽  
Kyle Thompson ◽  
Robert W. Taylor ◽  
Monika Oláhová

The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.


2001 ◽  
Vol 1 (S1) ◽  
Author(s):  
H van der Spek ◽  
M Siep ◽  
L de Jong ◽  
SDJ Elzinga ◽  
K van Oosterum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document