codon position
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 15 (12) ◽  
pp. 3273-3276
Author(s):  
Sana Hafeez ◽  
Haleema Sajid ◽  
Farouk Qamar Malik ◽  
Imran Ali Zaidi ◽  
Sobia Niaz ◽  
...  

Background: Tuberculosis (TB) is fatal and life threatening infectious disease. The transmission rate of tuberculosis is very high. Various drugs are used as treatment for TB. Recently it has been observed that one of the most important factor for fast TB spread is development of anti-TB drug resistant mycobacterium tuberculosis (MTB). Various combination of drugs like isoniazid (INH), rifampicin (RIF), Streptomycin(SM), pyrazinamide (PZA) or ethambutol (EMB) are in global use for TB treatment. Improper usage of these drugs makes the person prone to develop anti-TB drug resistant tuberculosis. Aim: To evaluate association of embB gene with ethambutol resistance in Mycobacterium Tuberculosis. Methods: 104 Specimens of sputum from suspected tuberculosis patients were processed for inoculation in Lowenstein J Medium after it has been decontaminated properly. Kit method by using QIAamp DNA Mini kit was utilized for extraction of DNA. Then region from base 6953 to 10249 of embB gene was amplified through PCR and then followed by sequencing with the aid of softwares blast2seq and ClustalW2. Three primer sets were utilized to amplify embB gene. Ethambutol (EMB) Resistant MTB specimens were processed to study mutation in embB gene. Results: Out of the total 104 sputum specimens, 14 samples were found to have ethambutol resistance. These 14 samples were then processed for mutational analysis. DNA sequence analysis of these 14 samples confirmed embB gene mutation in 10 samples. Mutational analysis revealed that 08 samples showed mutation at codon 306 and two samples showed mutation at 319 codon. The reported mutation Methionine →Isoleucine was seen in 07 samples with ATG codon replaced by ATA codon at codon position 306. One sample showed mutation as Methionine →Isoleucine with ATG codon replaced by ATC codon at codon position 306. Two samples showed mutation as Tyrosine →Serine with TAT codon replaced by TCT at 319 codon position in embB gene. Conclusion: This study concludes that mutation of certain genes particularly point mutation of embB gene at codon 306 and 319 is associated with drug resistance of ethambutol in ethambutol resistant mycobacterium tuberculosis patients. Keywords: Ethambutol, embB gene, Mycobacterium tuberculosis.


Author(s):  
Yan-Ting Jin ◽  
Cong Ma ◽  
Xin Wang ◽  
Shu-Xuan Wang ◽  
Kai-Yue Zhang ◽  
...  

AbstractIn 2002, our research group observed a gene clustering pattern based on the base frequency of A versus T at the second codon position in the genome of Vibrio cholera and found that the functional category distribution of genes in the two clusters was different. With the availability of a large number of sequenced genomes, we performed a systematic investigation of A2–T2 distribution and found that 2694 out of 2764 prokaryotic genomes have an optimal clustering number of two, indicating a consistent pattern. Analysis of the functional categories of the coding genes in each cluster in 1483 prokaryotic genomes indicated, that 99.33% of the genomes exhibited a significant difference (p < 0.01) in function distribution between the two clusters. Specifically, functional category P was overrepresented in the small cluster of 98.65% of genomes, whereas categories J, K, and L were overrepresented in the larger cluster of over 98.52% of genomes. Lineage analysis uncovered that these preferences appear consistently across all phyla. Overall, our work revealed an almost universal clustering pattern based on the relative frequency of A2 versus T2 and its role in functional category preference. These findings will promote the understanding of the rationality of theoretical prediction of functional classes of genes from their nucleotide sequences and how protein function is determined by DNA sequence. Graphical abstract


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 721
Author(s):  
Yoshinori Matsuo

The evolution of the GC (guanine cytosine) content at the third codon position of the histone genes (H1, H2A, H2B, H3, H4, H2AvD, H3.3A, H3.3B, and H4r) in 12 or more Drosophila species is reviewed. For explaining the evolution of the GC content at the third codon position of the genes, a model assuming selection with a deleterious effect for adenine/thymine and a size effect is presented. The applicability of the model to whole-genome genes is also discussed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Adrià Antich ◽  
Creu Palacin ◽  
Owen S. Wangensteen ◽  
Xavier Turon

Abstract Background The recent blooming of metabarcoding applications to biodiversity studies comes with some relevant methodological debates. One such issue concerns the treatment of reads by denoising or by clustering methods, which have been wrongly presented as alternatives. It has also been suggested that denoised sequence variants should replace clusters as the basic unit of metabarcoding analyses, missing the fact that sequence clusters are a proxy for species-level entities, the basic unit in biodiversity studies. We argue here that methods developed and tested for ribosomal markers have been uncritically applied to highly variable markers such as cytochrome oxidase I (COI) without conceptual or operational (e.g., parameter setting) adjustment. COI has a naturally high intraspecies variability that should be assessed and reported, as it is a source of highly valuable information. We contend that denoising and clustering are not alternatives. Rather, they are complementary and both should be used together in COI metabarcoding pipelines. Results Using a COI dataset from benthic marine communities, we compared two denoising procedures (based on the UNOISE3 and the DADA2 algorithms), set suitable parameters for denoising and clustering, and applied these steps in different orders. Our results indicated that the UNOISE3 algorithm preserved a higher intra-cluster variability. We introduce the program DnoisE to implement the UNOISE3 algorithm taking into account the natural variability (measured as entropy) of each codon position in protein-coding genes.  This correction increased the number of sequences retained by 88%. The order of the steps (denoising and clustering) had little influence on the final outcome. Conclusions We highlight the need for combining denoising and clustering, with adequate choice of stringency parameters, in COI metabarcoding. We present a program that uses the coding properties of this marker to improve the denoising step. We recommend researchers to report their results in terms of both denoised sequences (a proxy for haplotypes) and clusters formed (a proxy for species), and to avoid collapsing the sequences of the latter into a single representative. This will allow studies at the cluster (ideally equating species-level diversity) and at the intra-cluster level, and will ease additivity and comparability between studies.


2021 ◽  
Author(s):  
Adrià Antich ◽  
Creu Palacín ◽  
Owen S Wangensteen ◽  
Xavier Turon

The recent blooming of metabarcoding applications to biodiversity studies comes with some relevant methodological debates. One such issue concerns the treatment of reads by denoising or by clustering methods, which have been wrongly presented as alternatives. It has also been suggested that denoised sequence variants should replace clusters as the basic unit of metabarcoding analyses, missing the fact that sequence clusters are a proxy for species-level entities, the basic unit in biodiversity studies. We argue here that methods developed and tested for ribosomal markers have been uncritically applied to highly variable markers such as cytochrome oxidase I (COI) without conceptual or operational (e.g., parameter setting) adjustment. COI has a naturally high intraspecies variability that should be assessed and reported, as it is a source of highly valuable information. We contend that denoising and clustering are not alternatives. Rather, they are complementary and both should be used together in COI metabarcoding pipelines. Using a typical dataset from benthic marine communities, we compared two denoising procedures (based on the UNOISE3 and the DADA2 algorithms), set suitable parameters for denoising and clustering COI datasets, and compared the outcome of applying these processes in different orders. Our results indicate that denoising based on the UNOISE3 algorithm preserves a higher intra-cluster variability. We suggest and test ways to improve this algorithm taking into account the natural variability of each codon position in coding genes. The order of the steps (denoising and clustering) has little influence on the final outcome. We recommend researchers to consider reporting their results in terms of both denoised sequences (a proxy for haplotypes) and clusters formed (a proxy for species), and to avoid collapsing the sequences of the latter into a single representative. This will allow studies at the cluster (ideally equating species-level diversity) and at the intra-cluster level, and will ease additivity and comparability between studies.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Dimpal A. Nyayanit ◽  
Pragya D. Yadav ◽  
Rutuja Kharde ◽  
Sarah Cherian

Viruses belonging to the Coronaviridae family have a single-stranded positive-sense RNA with a poly-A tail. The genome has a length of ~29.9 kbps, which encodes for genes that are essential for cell survival and replication. Different evolutionary constraints constantly influence the codon usage bias (CUB) of different genes. A virus optimizes its codon usage to fit the host environment on which it savors. This study is a comprehensive analysis of the CUB for the different genes encoded by viruses of the Coronaviridae family. Different methods including relative synonymous codon usage (RSCU), an Effective number of codons (ENc), parity plot 2, and Neutrality plot, were adopted to analyze the factors responsible for the genetic evolution of the Coronaviridae family. Base composition and RSCU analyses demonstrated the presence of A-ended and U-ended codons being preferred in the 3rd codon position and are suggestive of mutational selection. The lesser ENc value for the spike ‘S’ gene suggests a higher bias in the codon usage of this gene compared to the other structural genes. Parity plot 2 and neutrality plot analyses demonstrate the role and the extent of mutational and natural selection towards the codon usage pattern. It was observed that the structural genes of the Coronaviridae family analyzed in this study were at the least under 84% influence of natural selection, implying a major role of natural selection in shaping the codon usage.


2020 ◽  
Author(s):  
Jayanta Kumar Das ◽  
Swarup Roy

AbstractPrevailing pandemic across the world due to SARSCoV-2 drawing great attention towards discovering its evolutionary origin. We perform an exploratory study to understand the variability of the whole coding region of possible proximal evolutionary neighbours of SARSCoV-2. We consider seven (07) human coronavirus strains from six different species as a candidate for our study.First, we observe a good variability of nucleotides across candidate strains. We did not find a significant variation of GC content across the strains for codon position first and second. However, we interestingly see huge variability of GC-content in codon position 3rd (GC3), and pairwise mean GC-content (SARSCoV, MERSCoV), and (SARSCoV-2, hCoV229E) are quite closer. While observing the relative abundance of dinucleotide feature, we find a shared typical genetic pattern, i.e., high usage of GC and CT nucleotide pair at the first two positions (P12) of codons and the last two positions (P23) of codons, respectively. We also observe a low abundance of CG pair that might help in their evolution bio-process. Secondly, Considering RSCU score, we find a substantial similarity for mild class coronaviruses, i.e., hCoVOC43, hCoVHKU1, and hCoVNL63 based on their codon hit with high RSCU value (≥ 1.5), and minim number of codons hit (count-9) is observed for MERSCoV. We see seven codons ATT, ACT, TCT, CCT, GTT, GCT and GGT with high RSCU value, which are common in all seven strains. These codons are mostly from Aliphatic and Hydroxyl amino acid group. A phylogenetic tree built using RSCU feature reveals proximity among hCoVOC43 and hCoV229E (mild). Thirdly, we perform linear regression analysis among GC content in different codon position and ENC value. We observe a strong correlation (significant p-value) between GC2 and GC3 for SARSCoV-2, hCoV229E and hCoVNL63, and between GC1 and GC3 for hCoV229E, hCoVNL63, SARSCoV. We believe that our findings will help in understanding the mechanism of human coronavirus.


2020 ◽  
Vol 129 (3) ◽  
pp. 740-751 ◽  
Author(s):  
Harlan M Gough ◽  
Julie M Allen ◽  
Emmanuel F A Toussaint ◽  
Caroline G Storer ◽  
Akito Y Kawahara

Abstract Phylogenomics is progressing rapidly, allowing large strides forward into our understanding of the tree of life. In this study, we generated transcriptomes from ethanol-preserved specimens of 13 tiger beetle species (Coleoptera: Cicindelinae) and one Scaritinae outgroup. From these 14 transcriptomes and seven publicly available transcriptomes, we recovered an average of 2538 loci for phylogenetic analysis. We constructed an evolutionary tree of tiger beetles to examine deep-level relationships and examined the extent to which the composition of the dataset, missing data, gene tree inconsistency and codon position saturation impacted phylogenetic accuracy. Ethanol-preserved specimens yielded similar numbers of loci to specimens originally preserved in costly reagents, showcasing more flexibility in transcriptomics than anticipated. The number of loci and gene tree inconsistency had less impact on downstream results than third codon position saturation and missing data. Our results recovered tiger beetles as sister to Carabidae with strong support, confirming their taxonomic status as an independent family within Adephaga. Within tiger beetles, phylogenetic relationships were robust across all nodes. This new phylogenomic backbone represents a useful framework for future endeavours in tiger beetle systematics and serves as a starting point for the development of less costly target capture toolkits to expand the taxonomic breadth of the future tiger beetle tree of life.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Zhaoqing Han ◽  
Kun Li ◽  
Houqiang Luo ◽  
Muhammad Shahzad ◽  
Khalid Mehmood

A study was conducted to reveal the characterization of the complete mitochondrial genome of Fischoederius elongatus derived from cows in Shanghai, China. Results indicated that the complete mt genome of F. elongatus was 14,288 bp and contained 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6, and cytb), 22 transfer RNA genes, and two ribosomal RNA genes (l-rRNA and s-rRNA). The overall A + T content of the mt genome was 63.83%, and the nucleotide composition was A (19.83%), C (9.75%), G (26.43%), and T (44.00%). A total of 3284 amino acids were encoded by current F. elongatus isolate mt genome, TTT (Phe) (9.84%) and TTG (Leu) (7.73%) codon were the most frequent amino acids, whereas the ACC (Thr) (0.06%), GCC (Ala) (0.09%), CTC (Leu) (0.09%), and AAC (Asn) (0.09%) codon were the least frequent ones. At the third codon position of F. elongatus mt protein genes, T (50.82%) was observed most frequently and C (5.85%) was the least one. The current results can contribute to epidemiology diagnosis, molecular identification, taxonomy, genetic, and drug development researches about this parasite species in cattle.


2020 ◽  
Vol 16 ◽  
pp. 117693432090373 ◽  
Author(s):  
Katherine E Noah ◽  
Jiasheng Hao ◽  
Luyan Li ◽  
Xiaoyan Sun ◽  
Brian Foley ◽  
...  

Deep phylogeny involving arthropod lineages is difficult to recover because the erosion of phylogenetic signals over time leads to unreliable multiple sequence alignment (MSA) and subsequent phylogenetic reconstruction. One way to alleviate the problem is to assemble a large number of gene sequences to compensate for the weakness in each individual gene. Such an approach has led to many robustly supported but contradictory phylogenies. A close examination shows that the supermatrix approach often suffers from two shortcomings. The first is that MSA is rarely checked for reliability and, as will be illustrated, can be poor. The second is that, to alleviate the problem of homoplasy at the third codon position of protein-coding genes due to convergent evolution of nucleotide frequencies, phylogeneticists may remove or degenerate the third codon position but may do it improperly and introduce new biases. We performed extensive reanalysis of one of such “big data” sets to highlight these two problems, and demonstrated the power and benefits of correcting or alleviating these problems. Our results support a new group with Xiphosura and Arachnopulmonata (Tetrapulmonata + Scorpiones) as sister taxa. This favors a new hypothesis in which the ancestor of Xiphosura and the extinct Eurypterida (sea scorpions, of which many later forms lived in brackish or freshwater) returned to the sea after the initial chelicerate invasion of land. Our phylogeny is supported even with the original data but processed with a new “principled” codon degeneration. We also show that removing the 1673 codon sites with both AGN and UCN codons (encoding serine) in our alignment can partially reconcile discrepancies between nucleotide-based and AA-based tree, partly because two sequences, one with AGN and the other with UCN, would be identical at the amino acid level but quite different at the nucleotide level.


Sign in / Sign up

Export Citation Format

Share Document