Modulation of branched-chain 2-oxo acid dehydrogenase complex activity in rat skeletal muscle by endurance training

1994 ◽  
Vol 1199 (2) ◽  
pp. 130-136 ◽  
Author(s):  
Hisao Fujii ◽  
Shimomura Yoshiharu ◽  
Kumpei Tokuyama ◽  
Masashige Suzuki
1993 ◽  
Vol 1157 (2) ◽  
pp. 290-296 ◽  
Author(s):  
Yoshiharu Shimomura ◽  
Hisao Fujii ◽  
Masashige Suzuki ◽  
Noriaki Fujitsuka ◽  
Makoto Naoi ◽  
...  

IUBMB Life ◽  
1998 ◽  
Vol 44 (6) ◽  
pp. 1211-1216 ◽  
Author(s):  
Hisao Fujii ◽  
Yoshiharu Shimomura ◽  
Taro Murakami ◽  
Naoya Nakai ◽  
Tasuku Sato ◽  
...  

1990 ◽  
Vol 271 (2) ◽  
pp. 523-528 ◽  
Author(s):  
B Boyer ◽  
R Odessey

The potential for branched-chain 2-oxo acid dehydrogenase complex (BCOADC) activity to be controlled by feedback inhibition was investigated by calculating the Elasticity Coefficients for several feedback inhibitors. We suggest that feedback inhibition is a quantitatively important regulatory mechanism by which branched-chain 2-oxo acid dehydrogenase activity is regulated. The potential for control of enzyme activity is greater for NADH than for the acyl-CoA products, and suggests that factors that alter the redox potential may physiologically regulate BCOADC activity through a feedback inhibitory mechanism in vivo. Local pH may also be an important regulatory control factor.


1984 ◽  
Vol 223 (3) ◽  
pp. 815-821 ◽  
Author(s):  
A J M Wagenmakers ◽  
J T G Schepens ◽  
J H Veerkamp

Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.


1983 ◽  
Vol 215 (1) ◽  
pp. 133-140 ◽  
Author(s):  
P N Lowe ◽  
J A Hodgson ◽  
R N Perham

The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.


1984 ◽  
Vol 220 (1) ◽  
pp. 273-281 ◽  
Author(s):  
A J M Wagenmakers ◽  
J T G Schepens ◽  
J A M Veldhuizen ◽  
J H Veerkamp

An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.


Sign in / Sign up

Export Citation Format

Share Document