A comparative study of young ‘Thompson Seedless’ grapevines (Vitis vinifera L.) under drip and furrow irrigation. II. Growth, water use efficiency and nitrogen partitioning

1995 ◽  
Vol 60 (3-4) ◽  
pp. 251-265 ◽  
Author(s):  
Francisco Araujo ◽  
Larry E. Williams ◽  
Mark A. Matthews
2015 ◽  
Vol 42 (2) ◽  
pp. 198 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

Several recent papers have shown that in grapevine (Vitis vinifera L.), interpretation of responses to drought can differ depending upon the parameter chosen to express water use efficiency (WUE). In the present paper, a series of WUE expressions, including physiological and agronomical, were compared in potted grapevines (Vitis vinifera L. cv. Sangiovese) that were either well-watered (WW) or subjected to progressive drought before veraison (WS) by supplying decreasing fractions (i.e. 70%, 50% and 30% of daily vine transpiration (Trd) determined gravimetrically before vines were fully rewatered. Although single-leaf intrinsic and instantaneous WUE increased with water stress severity, seasonal and whole-canopy WUE were similar to that before stress, at 70% Trd and upon rewatering, but dropped during severe water stress. WUE calculated as mass of DW stored in annual biomass (leaves, canes and bunches) per litre of water used did not differ on a seasonal basis, whereas WS plants showed lower must soluble solids at harvest, and unchanged colour and phenolic concentration in spite of smaller berries with higher relative skin growth. Results confirm that whole-canopy WUE is a much better index than any single-leaf based WUE parameter for extrapolation to agronomic WUE and actual grape composition. In our specific case study, it can be recommended that water supply to drought-stressed Sangiovese grapevines before veraison should not be lower than 70% of daily vine water use.


2011 ◽  
Vol 38 (11) ◽  
pp. 888 ◽  
Author(s):  
Alberto Palliotti ◽  
Stefano Poni ◽  
Oriana Silvestroni ◽  
Sergio Tombesi ◽  
Fabio Bernizzoni

Morpho-structural and physiological traits of Sangiovese and Montepulciano varieties (Vitis vinifera L. – two red grapes widely cultivated in Italy), grown outside under non-limiting water supply conditions were evaluated in 2007 and 2008 and results were correlated with yield components and grape composition. The 2-year analysis showed intraspecific differences in canopy characteristics, leaf and shoot properties, photosynthetic ability, water use efficiency, vine yield and grape composition. Compared with Sangiovese, Montepulciano was able to assure a higher whole-canopy seasonal net CO2 exchange rate during the season (+38% in mid morning and +49% in mid afternoon). It also had higher water use efficiency (especially early in the morning and in late afternoon) and a higher vine yield (+16%). Furthermore, total soluble solids (+1.7 °Brix), anthocyanins (+0.44 mg cm–2 berry skin) and phenolic compounds (+0.88 mg cm–2 berry skin) were higher in the grapes. To ensure this performance, Montepulciano vines have to support higher costs of growth and maintenance processes, made possible because of the increased respiration activity of the canopy during the night. We confirmed that vine yield and grape composition is strictly dependent on the seasonal photosynthetic capacity of the canopy. Therefore, Montepulciano should be put in a position to fully realise this substantial photosynthetic potential, by avoiding or reducing environmental stress. Sangiovese is structurally and morpho-physiologically better able to withstand any stress during the summer than Montepulciano. Sangiovese xylem tissue had larger mean vessel density and smaller mean vessel diameter and hydraulic conductance than Montepulciano, holding the hypothesis of less susceptibility to conduit damage.


2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

Author(s):  
Hipólito Medrano ◽  
Ignacio Tortosa ◽  
Esther Montes ◽  
Alicia Pou ◽  
Pedro Balda ◽  
...  

2015 ◽  
Vol 185 ◽  
pp. 113-120 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

2020 ◽  
Author(s):  
Shenglin Wang ◽  
Chen Luo ◽  
Yue Xie ◽  
Xiaotang Jiang ◽  
Yixin Wang ◽  
...  

Abstract Background: Traditional irrigation methods in protected vegetable production such as furrow irrigation result in low water use efficiency. New techniques, such as drip irrigation, micro-sprinkling irrigation have been developed for improving water use efficiency. However, these techniques have not been tested in greenhouse celery production. In this study, three different irrigation techniques micro-sprinkler irrigation (MS), furrow irrigation under plastic film mulching (PF) and micro-sprinkler irrigation under the plastic film mulching (MSP) were investigated whether the three techniques can improve the yield, quality and water use efficiency of greenhouse-grown celery, compared to furrow irrigation (FI). Results: The individual plant weight of celery was higher under MS, PF and MSP than under FI in both autumn season crop (AC) and spring season crop (SC), compared to FI. In AC and SC, the economic yield of celery increases under MSP by 54.18% and 49.55%, the economic yield of celery increases under PF by 30.37% and 34.10%. The irrigation amount of MSP was 151.69 and 179.91 m3 667 m-2 in AC and SC, which was 23.13% and 27.27% lower than that of FI. The irrigation amount of PF was 151.69 and 196.78 m3 667 m-2 in AC and SC, which was 23.13% and 20.45% lower than that of FI. PF and MSP reduced the irrigation amount of celery cultivation in greenhouse, and soil evaporation content. Conclusions: In short, MSP and PF promoted the growth and yield of celery in greenhouse with improved quality and water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document