berry skin
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 42)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 43 (1) ◽  
pp. 263-282
Author(s):  
Luana Tainá Machado Ribeiro ◽  
◽  
Maíra Tiaki Higuchi ◽  
Aline Cristina de Aguiar ◽  
Gabriel Danilo Shimizu ◽  
...  

The color of the berries is an important aspect of the quality of table grapes and crucial for marketing. The ‘Rubi’ table grapes grown in the subtropical climate generally lack color intensity due to the inhibition of anthocyanins by high temperatures during ripening. The exogenous application of abscisic acid (S-ABA) can be used to overcome this problem as the accumulation of anthocyanins in the berry skin is regulated by this plant growth regulator. The objective of this study was to assess the effect of the exogenous application of S-ABA at different stages of ripening on color development in ‘Rubi’ table grapes using the soluble solids (SS) content as a marker of ripening. The study was conducted during two seasons in commercial vineyards. The first trial was conducted in Marialva, Parana, Brazil, during the 2019 summer season crop (harvest in December). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of ‘Rubi’ table grapes (determined by the SS content of the berries): control (without application); SS = 8-9 ºBrix; SS = 10-11 ºBrix; SS = 8-9 ºBrix (two applications; the second one applied 10 days after the first); and SS = 10-11 ºBrix (two applications; the second one applied 10 days after the first). The second trial was conducted in Cambira, Parana, Brazil, during the 2020 off-season crop (harvest in May). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of ‘Rubi’ grapes: control (without application); SS = 6-7 ºBrix; SS = 7-8 ºBrix; SS = 9-10 ºBrix; SS = 6-7 ºBrix (two applications; the second one applied 14 days after the first); SS = 7-8 ºBrix (two applications; the second one applied 14 days after the first); and SS = 9-10 ºBrix (two applications; the second one applied 14 days after the first). A randomized block design was used as the statistical model with four replications, and each plot consisted of one vine. The variables analyzed were total anthocyanin contents, color index (CIRG), and color attributes (L*, C*, h°, and ΔE) of berry skin. The total anthocyanin accumulation and color attributes of the berries were evaluated every 10 and 7 days after the first application of S-ABA until harvest in the first and second trials, respectively, and the other variables were evaluated at harvest. In the summer-season crop, when the SS content was 8-11 ºBrix, the application of S-ABA increased the concentration of the total anthocyanins 4 times compared to that in the control, improving berry color development. Furthermore, in the off-season crop, when the SS content was 6-10 ºBrix, the application of S-ABA increased the concentration of total anthocyanins 2-3 times compared to that in the control, improving the color attributes of berries. In both crops, a single application of the plant growth regulator was sufficient to intensify the color of the berries.


2021 ◽  
Author(s):  
Chen Zhang ◽  
Zhanwu Dai ◽  
Thilia Ferrier ◽  
Luis Orduña ◽  
Antonio Santiago ◽  
...  

The presence of naturally-occurring color mutants in plants has permitted the identification of many regulatory genes implicated in the synthesis of discrete metabolic compounds, mostly anthocyanins and carotenoids. Conversely, transcription factors that coordinate more than one specialized metabolic pathway seem challenging to screen from a forward genetics perspective. We explored the relationship between different branches of the phenylpropanoid and isoprenoid pathways while examining an infrequent berry skin color variegation in grapevine. Red and white berry skin sections were compared at the genetic, transcriptomic and metabolomic levels showing that, as in most cultivated white grape varieties, the uncolored skin section convened the non-functional alleles of the anthocyanin regulators MYBA1 and MYBA2, explaining the lack of pigments. In contrast, light-responsive flavonols and monoterpenes increased in anthocyanin-depleted areas. We disclosed an enrichment of the flavonol, terpene and carotenoid pathways among up-regulated genes from white-skin sections, accompanied by increased expressions of flavonol regulators and the still uncharacterized MYB24 gene. We used DAP-seq to examine the in vitro binding of affinity-purified MYB24 protein to genomic DNA and demonstrated its binding in the promoter regions of terpene (22) and carotenoid (6) genes, in addition to more than 30 photosynthesis/light-response genes, including the flavonol-regulator HY5 homologue (HYH). We confirmed the activation of TPS35 and HYH promoter:luciferase reporters in the presence of MYB24 and the grape bHLH MYC2, all of which correlate in their higher expression in white skin variegated sections. The integration of several datasets allowed to define a list of high confidence targets, suggesting MYB24 as a modulator of light responses including the synthesis of flavonoids (flavonols) and isoprenoids (terpenes, and putatively carotenoids). The correspondence between MYB24 and monoterpenes in all conditions surveyed implies that this regulatory network is broadly triggered towards berry ripening, and that the absence of anthocyanin sunscreens accelerates its activation most likely in a dose-dependent manner due to increased radiation exposure.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2682
Author(s):  
Timo Strack ◽  
Manfred Stoll

Row orientation, among others, is a crucial factor in determining grapevine performance and health status, thus affecting berry components that form the basis of the later wine profile. However, the literature about the impact of changes in row orientation at steep slope sites on grapevine fruit composition as well as the differentiation between canopy sides hardly exists. Thus, the aim of this work was to gain knowledge about the impact of row orientation in steep slope vineyards on selected primary and secondary metabolites in berries of Vitis vinifera L. cv. Riesling. Samples were taken from both canopy sides of different row orientations of terraced and downslope vineyards in steep slopes. Free amino acids in the juice and flavonols in the berry skin had a positive correlation to sunlight exposure. Furthermore, grapevines showed adaptations to constantly higher light conditions, e.g., physiologically in reduction in chlorophyll content or protective mechanisms resulting in a lower susceptibility to sunburn damage. Thus, grapevine fruit parameters are affected by row orientation change in steep slopes.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2799
Author(s):  
Mone Yamazaki ◽  
Akari Ishida ◽  
Yutaka Suzuki ◽  
Yoshinao Aoki ◽  
Shunji Suzuki ◽  
...  

Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in response to it. Sound stimulation (sine wave sound at 1000 Hz) enhanced anthocyanin accumulation in grape cultured cells and berry skins in field-grown grapevines at the early stage of ripening. The transcription of UFGT and ACO2, which encode the key enzymes in anthocyanin and ethylene biosynthesis, respectively, was upregulated in grape cultured cells exposed to sound stimulation. In contrast, the transcription of MybA1 and NCED1, which encode a transcription factor for UFGT and a key enzyme in abscisic acid biosynthesis, respectively, was not affected by the sound stimulation. A treatment with an ethylene biosynthesis inhibitor, aminoethoxyvinyl glycine hydrochloride, revered the enhancement of anthocyanin accumulation by sound stimulation. As the promoter assay using a GUS reporter gene demonstrated that UFGT promoter was directly activated by the ethylene-releasing compound ethephon, which enhanced anthocyanin accumulation in grape cultured cells, we conclude that sound stimulation enhanced anthocyanin accumulation through the direct upregulation of UFGT by ethylene biosynthesis. Our findings suggest that sound stimulation contributes to alleviating poor coloration in berry skin as a novel and innovative practical technique in viticulture.


2021 ◽  
Vol 30 (4) ◽  
pp. 295-303
Author(s):  
Suhyun Ryu ◽  
Jung-Gun Cho ◽  
Jae Hoon Jeong ◽  
Seul-Ki Lee ◽  
Jeom Hwa Han

2021 ◽  
Vol 4 (1) ◽  
pp. 23-45
Author(s):  
Alberto Cugnetto ◽  
Giorgio Masoero

In the cultivation of vines the risk of hail appears to be increasing with the ongoing climate change. The use of protective plastic nets is spreading, but there is little knowledge on the additional processing costs and on the phenological and qualitative consequences, moreover, as depending on different colors of the nets. Thus, a randomized trial was carried out in Nebbiolo, a wine of great aging, testing three plastic anti-hail nets colored in green, gray and black. Results showed that 24% more-time was necessary for the canopy management practices under the nets. The black nets advanced the ripening process, with a berry weight decrease of about 13%. A significant decrease in the seed number per berry was observed under the black nets (-45%), while a rise (+102%) was observed under the green and gray nets with a parallel increase in the pH of the juice (+13%) and in malic acid (+28%) under the green nets. The berry skin did not show any significant differences in polyphenol and anthocyanin profiles, while the plants that matured in the upper part of the vineyard showed higher level in the berry skin extractable flavan-reactive to vanillin, and total polyphenol. On the other hand, in the seeds grown under green nets an increase in the extractable polyphenol compounds was observed, sign of a delay in seed ripening, with a higher tannin polymerization ratio, preserving the malic acid, and decreasing the acidity of the berry. In conclusion, the use of colored green may be a useful tool against excessive microclimatic warming and / or irradiation. The field internal variability affects much more the ripening dynamics than the nets used. A second aim was to develop a smart NIR SCiOTM model for polyphenols and the results were in line with the favorable expectations, providing R2 predictions of about 0.74 from the skin and 0.81 from the seeds.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1537
Author(s):  
Jerzy Lisek ◽  
Anna Lisek

The aim of this study was to assess the resistance to sour rot of twenty-eight valuable cultivars of grapevine for wine production and twenty-five cultivars of table grapevine with diverse geographic and genetic origins, and to explain the causes of varied resistance based on the features related to the morphology, biology and ecology of assessed genotypes. The study was conducted for six years in the grapevine field collection of the National Institute of Horticultural Research in Skierniewice (Poland, latitude 51.9627 N, longitude 20.1666 E). Sour rot was severe in three seasons with abundant rainfall during the berry ripening stage. The number of wine and table cultivars in particular classes of resistance (mean value for three years) was as follows: very little or little—9 (wine) and 9 (table), medium—9 (wine) and 3 (table), high or very high—10 (wine) and 13 (table). The severity of bunch sour rot was positively correlated with single berry weight (moderate or weak correlation), bunch density and single bunch weight (very weak or weak correlation), and negatively correlated with thickness of berry skin (strong correlation) and the time of the beginning of veraison (weak correlation). Cultivars that were characterized by such agrobiological and ecological features as easy detachment of the berry from the pedicel, sensitivity to berry skin cracking, frequent damage to the skin by insects, and sensitivity to sunburn, were more heavily exposed to sour rot.


Sign in / Sign up

Export Citation Format

Share Document