Morpho-structural and physiological performance of Sangiovese and Montepulciano cvv. (Vitis vinifera) under non-limiting water supply conditions

2011 ◽  
Vol 38 (11) ◽  
pp. 888 ◽  
Author(s):  
Alberto Palliotti ◽  
Stefano Poni ◽  
Oriana Silvestroni ◽  
Sergio Tombesi ◽  
Fabio Bernizzoni

Morpho-structural and physiological traits of Sangiovese and Montepulciano varieties (Vitis vinifera L. – two red grapes widely cultivated in Italy), grown outside under non-limiting water supply conditions were evaluated in 2007 and 2008 and results were correlated with yield components and grape composition. The 2-year analysis showed intraspecific differences in canopy characteristics, leaf and shoot properties, photosynthetic ability, water use efficiency, vine yield and grape composition. Compared with Sangiovese, Montepulciano was able to assure a higher whole-canopy seasonal net CO2 exchange rate during the season (+38% in mid morning and +49% in mid afternoon). It also had higher water use efficiency (especially early in the morning and in late afternoon) and a higher vine yield (+16%). Furthermore, total soluble solids (+1.7 °Brix), anthocyanins (+0.44 mg cm–2 berry skin) and phenolic compounds (+0.88 mg cm–2 berry skin) were higher in the grapes. To ensure this performance, Montepulciano vines have to support higher costs of growth and maintenance processes, made possible because of the increased respiration activity of the canopy during the night. We confirmed that vine yield and grape composition is strictly dependent on the seasonal photosynthetic capacity of the canopy. Therefore, Montepulciano should be put in a position to fully realise this substantial photosynthetic potential, by avoiding or reducing environmental stress. Sangiovese is structurally and morpho-physiologically better able to withstand any stress during the summer than Montepulciano. Sangiovese xylem tissue had larger mean vessel density and smaller mean vessel diameter and hydraulic conductance than Montepulciano, holding the hypothesis of less susceptibility to conduit damage.

2015 ◽  
Vol 42 (2) ◽  
pp. 198 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

Several recent papers have shown that in grapevine (Vitis vinifera L.), interpretation of responses to drought can differ depending upon the parameter chosen to express water use efficiency (WUE). In the present paper, a series of WUE expressions, including physiological and agronomical, were compared in potted grapevines (Vitis vinifera L. cv. Sangiovese) that were either well-watered (WW) or subjected to progressive drought before veraison (WS) by supplying decreasing fractions (i.e. 70%, 50% and 30% of daily vine transpiration (Trd) determined gravimetrically before vines were fully rewatered. Although single-leaf intrinsic and instantaneous WUE increased with water stress severity, seasonal and whole-canopy WUE were similar to that before stress, at 70% Trd and upon rewatering, but dropped during severe water stress. WUE calculated as mass of DW stored in annual biomass (leaves, canes and bunches) per litre of water used did not differ on a seasonal basis, whereas WS plants showed lower must soluble solids at harvest, and unchanged colour and phenolic concentration in spite of smaller berries with higher relative skin growth. Results confirm that whole-canopy WUE is a much better index than any single-leaf based WUE parameter for extrapolation to agronomic WUE and actual grape composition. In our specific case study, it can be recommended that water supply to drought-stressed Sangiovese grapevines before veraison should not be lower than 70% of daily vine water use.


2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

Author(s):  
Hipólito Medrano ◽  
Ignacio Tortosa ◽  
Esther Montes ◽  
Alicia Pou ◽  
Pedro Balda ◽  
...  

2015 ◽  
Vol 185 ◽  
pp. 113-120 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 602
Author(s):  
Stavroula Tsitsifli ◽  
Anastasia Papadopoulou ◽  
Vasilis Kanakoudis ◽  
Konstantinos Gonelas

Water use efficiency is a crucial issue in drinking water utilities as it is connected to environmental and economic consequences. WATenERgy CYCLE project aims at developing a methodological approach towards efficient and effective transnational water and energy resources management in the Balkan–Mediterranean area. The paper presents the results of performance evaluation of the water supply systems of the water utilities involved in the project, both at local and national level. The methodology used in the water balance and performance indicators as well as data on the operational status of the water supply systems. The results showed that Non-Revenue Water is one of the major problems addressed.


2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


Sign in / Sign up

Export Citation Format

Share Document