Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington

2019 ◽  
Vol 221 ◽  
pp. 47-57 ◽  
Author(s):  
Xiaochi Ma ◽  
Karen A. Sanguinet ◽  
Pete W. Jacoby
2021 ◽  
Vol 243 ◽  
pp. 106483 ◽  
Author(s):  
Yufeng Zou ◽  
Qaisar Saddique ◽  
Ajaz Ali ◽  
Jiatun Xu ◽  
Muhammad Imran Khan ◽  
...  

2015 ◽  
Vol 42 (2) ◽  
pp. 198 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

Several recent papers have shown that in grapevine (Vitis vinifera L.), interpretation of responses to drought can differ depending upon the parameter chosen to express water use efficiency (WUE). In the present paper, a series of WUE expressions, including physiological and agronomical, were compared in potted grapevines (Vitis vinifera L. cv. Sangiovese) that were either well-watered (WW) or subjected to progressive drought before veraison (WS) by supplying decreasing fractions (i.e. 70%, 50% and 30% of daily vine transpiration (Trd) determined gravimetrically before vines were fully rewatered. Although single-leaf intrinsic and instantaneous WUE increased with water stress severity, seasonal and whole-canopy WUE were similar to that before stress, at 70% Trd and upon rewatering, but dropped during severe water stress. WUE calculated as mass of DW stored in annual biomass (leaves, canes and bunches) per litre of water used did not differ on a seasonal basis, whereas WS plants showed lower must soluble solids at harvest, and unchanged colour and phenolic concentration in spite of smaller berries with higher relative skin growth. Results confirm that whole-canopy WUE is a much better index than any single-leaf based WUE parameter for extrapolation to agronomic WUE and actual grape composition. In our specific case study, it can be recommended that water supply to drought-stressed Sangiovese grapevines before veraison should not be lower than 70% of daily vine water use.


2011 ◽  
Vol 38 (11) ◽  
pp. 888 ◽  
Author(s):  
Alberto Palliotti ◽  
Stefano Poni ◽  
Oriana Silvestroni ◽  
Sergio Tombesi ◽  
Fabio Bernizzoni

Morpho-structural and physiological traits of Sangiovese and Montepulciano varieties (Vitis vinifera L. – two red grapes widely cultivated in Italy), grown outside under non-limiting water supply conditions were evaluated in 2007 and 2008 and results were correlated with yield components and grape composition. The 2-year analysis showed intraspecific differences in canopy characteristics, leaf and shoot properties, photosynthetic ability, water use efficiency, vine yield and grape composition. Compared with Sangiovese, Montepulciano was able to assure a higher whole-canopy seasonal net CO2 exchange rate during the season (+38% in mid morning and +49% in mid afternoon). It also had higher water use efficiency (especially early in the morning and in late afternoon) and a higher vine yield (+16%). Furthermore, total soluble solids (+1.7 °Brix), anthocyanins (+0.44 mg cm–2 berry skin) and phenolic compounds (+0.88 mg cm–2 berry skin) were higher in the grapes. To ensure this performance, Montepulciano vines have to support higher costs of growth and maintenance processes, made possible because of the increased respiration activity of the canopy during the night. We confirmed that vine yield and grape composition is strictly dependent on the seasonal photosynthetic capacity of the canopy. Therefore, Montepulciano should be put in a position to fully realise this substantial photosynthetic potential, by avoiding or reducing environmental stress. Sangiovese is structurally and morpho-physiologically better able to withstand any stress during the summer than Montepulciano. Sangiovese xylem tissue had larger mean vessel density and smaller mean vessel diameter and hydraulic conductance than Montepulciano, holding the hypothesis of less susceptibility to conduit damage.


2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

2009 ◽  
Vol 55 (No. 11) ◽  
pp. 494-503 ◽  
Author(s):  
A. Yazar ◽  
F. Gökçel ◽  
M.S. Sezen

This paper evaluates the effect of partial root zone drying (PRD) and deficit irrigation (DI) strategies on yield and water use efficiency of the drip-irrigated corn on clay soils under the Mediterranean climatic conditions in Southern Turkey. Four deficit (PRD-100; PRD-75; PRD-50; and DI-50) and one full irrigation (FI) strategies based on cumulative evaporation (E<sub> pan</sub>) from class A pan at 7-day interval were studied. Full (FI) and deficit irrigation (DI-50) treatments received 100 and 50% of E<sub>pan</sub>, respectively. PRD-100, PRD-75 and PRD-50 received 100, 75 and 50% E<sub>pan</sub> value, respectively. The highest water use was observed in FI as 677 mm, the lowest was found in PRD-50 as 375 mm. PRD-100 and DI-50 resulted in similar water use (438 and 445 mm). The maximum grain yield was obtained from the FI as 10.40 t/ha, while DI-50 and PRD-100 resulted in similar grain yields of 7.72 and 7.74 t/ha, respectively. There was a significant difference among the treatments with respect to grain yields (<i>P</i> < 0.01). The highest water use efficiency (WUE) was found in PRD-100 as 1.77 kg/m<sup>3</sup>, and the lowest one was found in FI as 1.54 kg/m<sup>3</sup>.


Sign in / Sign up

Export Citation Format

Share Document