Cytoplasmic RNA from hen reticulocytes, mouse sarcoma 180 ascites cells, rat liver and barley embryos. Their preparation and purification by a standard procedure and characterization by polyacrylamide gel electrophoresis

Author(s):  
Ahmed A. Azad
1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


1981 ◽  
Vol 193 (2) ◽  
pp. 503-512 ◽  
Author(s):  
E O Kajander ◽  
A M Raina

S-Adenosyl-L-homocysteine hydrolase has been purified to apparent homogeneity from rat liver by means of affinity chromatography on 8-(3-aminopropylamino)adenosine linked to Sepharose. The purified enzyme was free from adenosine kinase and adenosine deaminase activities and was homogeneous on SDS/polyacrylamide-gel electrophoresis which gave a subunit mol.wt. of 47 000. The native enzyme showed some microheterogeneity on polyacrylamide-gel electrophoresis under increased-resolution conditions but was homogeneous on isoelectric focusing (pI 5.6). The molecular weight of the native enzyme was about 220 000 as judged by pore-gradient electrophoresis. The native enzyme bound adenosine tightly and showed Km values of 0.6 microM, 0.9 microM and 60 microM for adenosine, S-adenosyl-L-homocysteine and L-homocysteine respectively. The enzyme was rapidly inactivated when incubated in the presence of adenosine, S-adenosyl-L-homocysteine or several adenosine derivatives or analogues. Inactivation took place both at 0 and 37 degrees C. Freezing in the absence of glycerol resulted in the appearance of dissociation products of the oligomeric protein. Multimer formation was observed at low thiol concentrations.


1982 ◽  
Vol 60 (4) ◽  
pp. 463-470 ◽  
Author(s):  
T. Youdale ◽  
J. P. MacManus ◽  
J. F. Whitfield

Two nonidentical subunits of mammalian ribonucleotide reductase, L1 and L2, from regenerating rat liver have been extensively purified for the first time. They were separated by dATP-Sepharose affinity chromatography. Subunit L1, which bound to dATP-Sepharose, was eluted with 50 mM ATP and purified to homogeneity (as demonstrated by sodium dodecyl sulfate (SDS) – polyacrylamide gel electrophoresis) by molecular exclusion high-pressure liquid chromatography (HPLC). This subunit had an apparent relative mass (Mr) of 45 000 and a Km of 0.9 × 10−4 for CDP. Subunit L2, which did not bind to dATP-Sepharose, was purified by pH 5.2 precipitation followed by chromatography on CM-Sephadex, molecular exclusion HPLC, and DEAE-cellulose. This subunit contained iron and had an apparent Mr of 120 000 by HPLC molecular exclusion chromatography, but showed two bands (Mr 75 000 and Mr 47 000) on SDS–polyacrylamide gel electrophoresis. Neither L1 nor L2 separately had any enzyme activity but when combined they reduced CDP to dCDP.


1989 ◽  
Vol 260 (1) ◽  
pp. 101-108 ◽  
Author(s):  
O K Tollersrud ◽  
N N Aronson

1. Rat liver glycosylasparaginase [N4-(beta-N-acetylglucosaminyl)-L-asparaginase, EC 3.5.1.26] was purified to homogeneity by using salt fractionation, CM-cellulose and DEAE-cellulose chromatography, gel filtration on Ultrogel AcA-54, concanavalin A-Sepharose affinity chromatography, heat treatment at 70 degrees C and preparative SDS/polyacrylamide-gel electrophoresis. The purified enzyme had a specific activity of 3.8 mumol of N-acetylglucosamine/min per mg with N4-(beta-N-acetylglucosaminyl)-L-asparagine as substrate. 2. The native enzyme had a molecular mass of 49 kDa and was composed of two non-identical subunits joined by strong non-covalent forces and having molecular masses of 24 and 20 kDa as determined by SDS/polyacrylamide-gel electrophoresis. 3. The 20 kDa subunit contained one high-mannose-type oligosaccharide chain, and the 24 kDa subunit had one high-mannose-type and one complex-type oligosaccharide chain. 4. N-Terminal sequence analysis of each subunit revealed a frayed N-terminus of the 24 kDa subunit and an apparent N-glycosylation of Asn-15 in the same subunit. 5. The enzyme exhibited a broad pH maximum above 7. Two major isoelectric forms were found at pH 6.4 and 6.6. 6. Glycosylasparaginase was stable at 75 degrees C and in 5% (w/v) SDS at pH 7.0.


1974 ◽  
Vol 52 (12) ◽  
pp. 1143-1153 ◽  
Author(s):  
D. Suria ◽  
C. C. Liew

Non-histone chromatin proteins were isolated from rat-liver nuclei by three different methods, and defined as (I) phenol-soluble proteins, (II) SDS-soluble proteins and (III) proteins not adsorbed by cation-exchange chromatography. About 62–70% of chromatin proteins were recovered from the total nuclear proteins. The yield of non-histone chromatin proteins varied from 17 to 26% of chromatin proteins, depending on the method used. The amino-acid composition of these proteins showed that they are acidic in nature. Their phosphorus content was found to be 0.9, 1.1, and 1.4%, respectively, according to method I, II, or III. In-vivo pulse-labelling experiments indicated that chromatin proteins were highly labelled with 3H-acetate and 32P-phosphoric acid. In particular, the specific activities of 32P incorporation were higher in all non-histone chromatin proteins isolated as compared with histones. One-dimensional SDS–polyacrylamide gel electrophoresis showed that at least 26 similar fractions can be detected in the samples prepared by these three methods.The similarity of some of the proteins obtained from methods I and III was further confirmed by fractionation of the non-histone chromatin proteins in an isoelectro-focusing system followed by a second-dimensional SDS–polyacrylamide gel electrophoresis. It was found that more than 100 components could be identified. However, some minor variations of the non-histone chromatin proteins were detected by this system. The differences in proteins isolated by these methods are mainly quantitative rather than qualitative. The methods examined are not specific for the fractionation of a certain class of non-histone chromatin proteins.


1983 ◽  
Vol 215 (3) ◽  
pp. 617-625 ◽  
Author(s):  
T Friedberg ◽  
U Milbert ◽  
P Bentley ◽  
T M Guenther ◽  
F Oesch

A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document