In vivo intracellular demonstration of an ischemia-induced postsynaptic potential from CA1 pyramidal neurons in rat hippocampus

Neuroscience ◽  
1996 ◽  
Vol 75 (3) ◽  
pp. 665-669 ◽  
Author(s):  
T.M. Gao ◽  
Z.C. Xu
1988 ◽  
Vol 66 (8) ◽  
pp. 1100-1102 ◽  
Author(s):  
Paul Perreault ◽  
Massimo Avoli

We report that CA1 pyramidal neurons of the rat hippocampus respond to high intensity afferent stimulation by generating a late depolarizing potential that typically occurs between the early (fast) inhibitory postsynaptic potential (IPSP) and the late (slow) IPSP. This potential is reminiscent of the response seen after the application of 4-aminopyridine and can be blocked by bicuculline, indicating that GABAA receptors are involved in its generation.


2005 ◽  
Vol 93 (3) ◽  
pp. 1326-1335 ◽  
Author(s):  
Yuan Fan ◽  
Bende Zou ◽  
Yiwen Ruan ◽  
Zhiping Pang ◽  
Zao C. Xu

Previous studies have shown that GABA can have a depolarizing and excitatory action through GABAA receptors in mature CNS neurons in vitro. However, it remains unknown whether this occurs under physiological conditions. In this study, using intracellular recording and staining in vivo technique, we show a late depolarizing postsynaptic potential (L-PSP) in CA1 pyramidal neurons of adult Wistar rats under halothane anesthesia. This L-PSP was elicited in ∼70% of the recorded neurons on stimulation of the Schaffer collaterals or the contralateral commissural path. The size of L-PSP was linearly correlated to the decay time constant but not the rising slope of the initial excitatory PSP (EPSP). Intravenous administration of the N-methyl-d-aspartate (NMDA) receptor blocker MK-801 and the GABAA receptor blocker picrotoxin significantly reduced the size of the L-PSP. The spine density and apical dendritic branching length of the neurons that displayed L-PSPs was significantly greater than those that do not. These results indicate that NMDA receptor and GABAA receptor-mediated depolarizing postsynaptic potentials can be revealed in CA1 pyramidal neurons of adult rats in vivo, supporting the physiological relevance of GABAA-mediated depolarization in normal neuronal information processing. The difference in electrophysiological properties and morphological features between neurons that display the L-PSP and the other neurons suggest that they might represent two different subtypes of CA1 pyramidal neurons.


2006 ◽  
Vol 95 (5) ◽  
pp. 3113-3128 ◽  
Author(s):  
Carl Gold ◽  
Darrell A. Henze ◽  
Christof Koch ◽  
György Buzsáki

Although extracellular unit recording is typically used for the detection of spike occurrences, it also has the theoretical ability to report about what are typically considered intracellular features of the action potential. We address this theoretical ability by developing a model system that captures features of experimentally recorded simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons. We use the line source approximation method of Holt and Koch to model the extracellular action potential (EAP) voltage resulting from the spiking activity of individual neurons. We compare the simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons recorded in vivo with model predictions for the same cells reconstructed and simulated with compartmental models. The model accurately reproduces both the waveform and the amplitude of the EAPs, although it was difficult to achieve simultaneous good matches on both the intracellular and extracellular waveforms. This suggests that accounting for the EAP waveform provides a considerable constraint on the overall model. The developed model explains how and why the waveform varies with electrode position relative to the recorded cell. Interestingly, each cell's dendritic morphology had very little impact on the EAP waveform. The model also demonstrates that the varied composition of ionic currents in different cells is reflected in the features of the EAP.


2018 ◽  
Author(s):  
Hyowon Chung ◽  
Kyerl Park ◽  
Hyun Jae Jang ◽  
Michael M Kohl ◽  
Jeehyun Kwag

AbstractAbnormal accumulation of amyloid β oligomers (AβO) is a hallmark of Alzheimer’s disease (AD), which leads to learning and memory deficits. Hippocampal theta oscillations that are critical in spatial navigation, learning and memory are impaired in AD. Since GABAergic interneurons, such as somatostatin-positive (SST+) and parvalbumin-positive (PV+) interneurons, are believed to play key roles in the hippocampal oscillogenesis, we asked whether AβO selectively impairs these SST+ and PV+ interneurons. To selectively manipulate SST+ or PV+ interneuron activity in mice with AβO pathologyin vivo, we co-injected AβO and adeno-associated virus (AAV) for expressing floxed channelrhodopsin-2 (ChR2) into the hippocampus of SST-Cre or PV-Cre mice. Local field potential (LFP) recordingsin vivoin these AβO–injected mice showed a reduction in the peak power of theta oscillations and desynchronization of spikes from CA1 pyramidal neurons relative to theta oscillations compared to those in control mice. Optogenetic-activation of SST+ but not PV+ interneurons in AβO–injected mice fully restored the peak power of theta oscillations and resynchronized the theta spike phases to a level observed in control mice.In vitrowhole-cell voltage-clamp recordings in CA1 pyramidal neurons in hippocampal slices treated with AβO revealed that short-term plasticity of SST+ interneuron inhibitory inputs to CA1 pyramidal neurons at theta frequency were selectively disrupted while that of PV+ interneuron inputs were unaffected. Together, our results suggest that dysfunction in inputs from SST+ interneurons to CA1 pyramidal neurons may underlie the impairment of theta oscillations observed in AβO-injected micein vivo.Our findings identify SST+ interneurons as a target for restoring theta-frequency oscillations in early AD.


2016 ◽  
Vol 40 (6) ◽  
pp. 1274-1288 ◽  
Author(s):  
Ting Ju ◽  
Yuru Li ◽  
Xiaoran Wang ◽  
Lifeng Xiao ◽  
Li Jiang ◽  
...  

Background: Streptozotocin (STZ) has served as an agent to generate an Alzheimer's disease (AD) model in rats, while edaravone (EDA), a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs), AMPAR-mediated eEPSCs (eEPSCsAMPA), evoked inhibitory postsynaptic currents (eIPSCs), evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR) and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR), it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM) significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM) attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.


2004 ◽  
Vol 999 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Fang Wang ◽  
Gang Zhao ◽  
Lan Cheng ◽  
Hong-Yi Zhou ◽  
Li-Ying Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document