Acoustic emission monitoring of composite high-pressure fluid storage tanks

1986 ◽  
Vol 19 (4) ◽  
pp. 259-262 ◽  
Author(s):  
C. Le Floc'h
2021 ◽  
Author(s):  
Denis Bogomolov ◽  
Nicola Testoni ◽  
Luca de Marchi ◽  
Tommaso Borzone ◽  
Antonio Terribile ◽  
...  

Abstract In oil depots and fuel storage facilities, undetected storage tanks damages can lead to the leakage of the oil stored in the soil leading to pollution and economical losses. Leaks are generally due to the perforation of the storage tank floor due to corrosion. The detection of corrosion and leaks is a complicated task, especially for operative tanks with inaccessible floor for detailed inspections and is generally attempted by mean of acoustic emission systems operating from the outer skin of the tank. In this paper, we present a compact sensor node (SN) designed for long-term and real-time acoustic emission monitoring. The SN exploits up to three inexpensive low-frequency sensors based on piezoelectric diaphragms, and it is capable by means of built-in Digital Signal Processing functionalities to process the acquired time waveforms extracting the AE features usually required by testing protocols. An experimental validation on a floating-roof aboveground storage tank 17 m high and 18 m in diameter, filled with water to a level of about 6.2 m, is proposed. Leaks were induced by opening and closing a drainage valve existing at the bottom skirt of the storage tank while acoustic emission signals were recorded at three sensors and processed in real time. Designed nozzles of different diameter, from 1 mm to 9 mm, where used to simulate leakages of different entities. The results confirm the possibility of detecting and monitoring leaks of various diameters in the low-frequency region 1–2 kHz not traditionally considered by state-of-art acoustic-emission monitoring systems.


2016 ◽  
Vol 16 (6) ◽  
pp. 732-744 ◽  
Author(s):  
Ahmed A Abouhussien ◽  
Assem AA Hassan

This article presents the results of an experimental investigation on the application of acoustic emission monitoring for the evaluation of bond behaviour of deteriorated reinforced concrete beams. Five reinforced concrete beam–anchorage specimens designed to undergo bond failure were exposed to corrosion at one of the anchorage zones by accelerated corrosion. Two additional beams without exposure to corrosion were included as reference specimens. The corroded beams were subjected to four variable periods of corrosion, leading to four levels of steel mass loss (5%, 10%, 20% and 30%). After these corrosion periods, all seven beams were tested to assess their bond performance using a four-point load setup. The beams were continuously monitored by attached acoustic emission sensors throughout the four-point load test until bond failure. The analysis of acquired acoustic emission signals from bond testing was performed to detect early stages of bond damage. Further analysis was executed on signal strength of acoustic emission signals, which used cumulative signal strength, historic index ( H( t)) and severity ( Sr) to characterize the bond degradation in all beams. This analysis allowed early identification of three stages of damage, namely, first crack, initial slip and anchorage cracking, before their visual observation, irrespective of corrosion level or sensor location. Higher corrosion levels yielded significant reduction in both bond strength and corresponding acoustic emission parameters. The results of acoustic emission parameters ( H( t) and Sr) enabled the development of a damage classification chart to identify different stages of bond deterioration.


2016 ◽  
Vol 16 (3) ◽  
pp. 313-324 ◽  
Author(s):  
A.C. Mpalaskas ◽  
T.E. Matikas ◽  
D. Van Hemelrijck ◽  
G.S. Papakitsos ◽  
D.G. Aggelis

Sign in / Sign up

Export Citation Format

Share Document