Application of acoustic emission monitoring for assessment of bond performance of corroded reinforced concrete beams

2016 ◽  
Vol 16 (6) ◽  
pp. 732-744 ◽  
Author(s):  
Ahmed A Abouhussien ◽  
Assem AA Hassan

This article presents the results of an experimental investigation on the application of acoustic emission monitoring for the evaluation of bond behaviour of deteriorated reinforced concrete beams. Five reinforced concrete beam–anchorage specimens designed to undergo bond failure were exposed to corrosion at one of the anchorage zones by accelerated corrosion. Two additional beams without exposure to corrosion were included as reference specimens. The corroded beams were subjected to four variable periods of corrosion, leading to four levels of steel mass loss (5%, 10%, 20% and 30%). After these corrosion periods, all seven beams were tested to assess their bond performance using a four-point load setup. The beams were continuously monitored by attached acoustic emission sensors throughout the four-point load test until bond failure. The analysis of acquired acoustic emission signals from bond testing was performed to detect early stages of bond damage. Further analysis was executed on signal strength of acoustic emission signals, which used cumulative signal strength, historic index ( H( t)) and severity ( Sr) to characterize the bond degradation in all beams. This analysis allowed early identification of three stages of damage, namely, first crack, initial slip and anchorage cracking, before their visual observation, irrespective of corrosion level or sensor location. Higher corrosion levels yielded significant reduction in both bond strength and corresponding acoustic emission parameters. The results of acoustic emission parameters ( H( t) and Sr) enabled the development of a damage classification chart to identify different stages of bond deterioration.

2015 ◽  
Vol 773-774 ◽  
pp. 1022-1026 ◽  
Author(s):  
Md Noor Noorsuhada ◽  
Ibrahim Azmi ◽  
Muhamad Bunnori Norazura ◽  
Mohd Saman Hamidah ◽  
Mat Saliah Soffian Noor ◽  
...  

Fatigue crack of the precast reinforced concrete beam under repetition loading is vital to be examined. Reinforced concrete structures exposed to excessive repetition loading could lead to the failure of the structures. In order to examine the active fatigue crack, the reinforced concrete beams were subjected to three-point repetition maximum loading. Eight phases of maximum fatigue loading with sinusoidal wave, frequency of 1 Hz and 5000 cycles for each phase were performed on the reinforced concrete beams. The inspection was carried out with visual observation of the crack pattern and acoustic emission technique for each load phase. The signal strength of acoustic emission was investigated. It is found that the signal strength of acoustic emission and crack pattern of the reinforced concrete beam subjected to repetition loadings showed promising results for structural health monitoring.


2008 ◽  
Vol 64 (1) ◽  
pp. 72-81
Author(s):  
Kentaro OHNO ◽  
Shinichiro SHIMOZONO ◽  
Yosuke SAWADA ◽  
Masayasu OHTSU

Reinforced concrete structures are subjected to deterioration due to many factors such as corrosion of reinforcing steel. Ultimate strengths of structural elements can be greatly affected by these deteriorating factors. There are numerous methods and techniques used to protect these structural elements. The mortar layer (Plastering) is considered the first defense line against all the deteriorating factors. The main goal of this research is to investigate to what extent the plastering layer can protect reinforced concrete beams against corrosion. The aim of the experimental program is to study the effect of plastering layer on corrosion resistance of reinforced concrete beams. Four reinforced concrete beams (1002001100 mms) and four Lollypop specimens (cylinders 100200 mms) were tested and described as follows: • A beam and a lollypop specimen without any plastering layer (control). • A beam and a lollypop specimen with traditional plastering layer (cement + sand + water). • A beam and a lollypop specimen with modified plastering (traditional plastering + waterproof admixtures). • A beam and a lollypop specimen with painted and modified plastering layer (traditional plastering + waterproof admixtures + external waterproof paint). These eight specimens were subjected to corrosion using accelerated corrosion technique, after that the four beams were tested in flexure under three point load arrangement while the four lollypops were used to calculate the total mass loss due to accelerated corrosion. The test results were used to figure out the effect of plastering layer on corrosion resistance of RC beams.


Sign in / Sign up

Export Citation Format

Share Document