Sufficient conditions for periodic solutions to a class of second-order differential equations

1991 ◽  
Vol 17 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Stewart C. Welsh
2018 ◽  
Vol 24 (2) ◽  
pp. 127-137
Author(s):  
Jaume Llibre ◽  
Ammar Makhlouf

Abstract We provide sufficient conditions for the existence of periodic solutions of the second-order differential equation with variable potentials {-(px^{\prime})^{\prime}(t)-r(t)p(t)x^{\prime}(t)+q(t)x(t)=f(t,x(t))} , where the functions {p(t)>0} , {q(t)} , {r(t)} and {f(t,x)} are {\mathcal{C}^{2}} and T-periodic in the variable t.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Naima Daoudi-Merzagui ◽  
Abdelkader Boucherif

We discuss the existence of periodic solutions for nonautonomous second order differential equations with singular nonlinearities. Simple sufficient conditions that enable us to obtain many distinct periodic solutions are provided. Our approach is based on a variational method.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


Sign in / Sign up

Export Citation Format

Share Document