scholarly journals New Conditions for the Oscillation of Second-Order Differential Equations with Sublinear Neutral Terms

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


1993 ◽  
Vol 36 (4) ◽  
pp. 485-496 ◽  
Author(s):  
Shigui Ruan

AbstractIn this paper, we consider the oscillatory behavior of the second order neutral delay differential equationwhere t ≥ t0,T and σ are positive constants, a,p, q € C(t0, ∞), R),f ∊ C[R, R]. Some sufficient conditions are established such that the above equation is oscillatory. The obtained oscillation criteria generalize and improve a number of known results about both neutral and delay differential equations.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 134 ◽  
Author(s):  
Shyam Sundar Santra ◽  
Ioannis Dassios ◽  
Tanusri Ghosh

In this work, we present some new sufficient conditions for the oscillation of a class of second-order neutral delay differential equation. Our oscillation results, complement, simplify and improve recent results on oscillation theory of this type of non-linear neutral differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Hammad Alotaibi ◽  
Omar Bazighifan

AbstractDifferential equations of second order appear in numerous applications such as fluid dynamics, electromagnetism, quantum mechanics, neural networks and the field of time symmetric electrodynamics. The aim of this work is to establish necessary and sufficient conditions for the oscillation of the solutions to a second-order neutral differential equation. First, we have taken a single delay and later the results are generalized for multiple delays. Some examples are given and open problems are presented.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 777 ◽  
Author(s):  
Clemente Cesarano ◽  
Omar Bazighifan

In this work, we study the oscillation of second-order delay differential equations, by employing a refinement of the generalized Riccati substitution. We establish a new oscillation criterion. Symmetry ideas are often invisible in these studies, but they help us decide the right way to study them, and to show us the correct direction for future developments. We illustrate the results with some examples.


2005 ◽  
Vol 48 (2) ◽  
pp. 485-498 ◽  
Author(s):  
Ch. G. Philos ◽  
I. K. Purnaras ◽  
Y. G. Sficas

AbstractSecond-order linear (non-autonomous as well as autonomous) delay differential equations of unstable type are considered. In the non-autonomous case, sufficient conditions are given in order that all oscillatory solutions are bounded or all oscillatory solutions tend to zero at $\infty$. In the case where the equations are autonomous, necessary and sufficient conditions are established for all oscillatory solutions to be bounded or all oscillatory solutions to tend to zero at $\infty$.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1111
Author(s):  
Shyam Sundar Santra ◽  
Abhay Kumar Sethi ◽  
Osama Moaaz ◽  
Khaled Mohamed Khedher ◽  
Shao-Wen Yao

In this work, we prove some new oscillation theorems for second-order neutral delay differential equations of the form (a(ξ)((v(ξ)+b(ξ)v(ϑ(ξ)))′))′+c(ξ)G1(v(κ(ξ)))+d(ξ)G2(v(ς(ξ)))=0 under canonical and non-canonical operators, that is, ∫ξ0∞dξa(ξ)=∞ and ∫ξ0∞dξa(ξ)<∞. We use the Riccati transformation to prove our main results. Furthermore, some examples are provided to show the effectiveness and feasibility of the main results.


Sign in / Sign up

Export Citation Format

Share Document