The electron magnetic moment at high temperature

1982 ◽  
Vol 114 (5) ◽  
pp. 359-362 ◽  
Author(s):  
Yasushi Fujimoto ◽  
Jae Hyung Yee
2003 ◽  
Vol 17 (24) ◽  
pp. 1271-1275 ◽  
Author(s):  
I. ARDELEAN ◽  
C. ANDRONACHE ◽  
P. PǍŞCUŢǍ

The temperature dependence of the magnetic susceptibility of x Fe 2 O 3·(100-x)-[ P 2 O 5· CaO ] glasses with 0<x≤50 mol % have been investigated. These data revealed that the valence states and the distribution of iron ions in the glass matrix depend on the Fe 2 O 3 content. For the glasses with x≤1 mol % only Fe 3+ ions are evidenced. In the case of the glasses with 3≤x≤35 mol % both Fe 3+ and Fe 2 ions co-exist in the P 2 O 5· CaO glass matrix, the Fe 2+ ion content is higher than that of the Fe 3+ ions for glasses with x≥10 mol %. For the glasses with x>35 mol %, the evaluated values of the μ eff indicate either the presence of Fe + ions or the coordination influence on the magnetic moment of iron ions, but the presence of small quantities of the antiferromagnetic or ferrimagnetic interactions between iron ions in studied temperature range cannot be excluded. The high temperature susceptibility results indicate that the iron ions are isolated or participate in dipole-dipole interactions for glasses with x≤35 mol % and are antiferromagnetically coupled for higher contents of Fe 2 O 3.


2011 ◽  
Vol 26 (26) ◽  
pp. 1985-1994 ◽  
Author(s):  
ANTONIO ACCIOLY ◽  
PATRICIO GAETE ◽  
JOSÉ HELAYËL-NETO ◽  
ESLLEY SCATENA ◽  
RODRIGO TURCATI

We consider the Lee–Wick (LW) electrodynamics, i.e. the U(1) gauge theory where a (gauge-invariant) dimension-6 operator containing higher derivatives is added to the free Lagrangian of the U(1) sector. A quantum bound on the LW heavy particle mass is then estimated by computing the anomalous electron–magnetic moment in the context of the aforementioned model. This limit is not only within the allowed range estimated by LW, it is also of the same order as that considered in early investigations on the possible effects of the LW heavy particle in e-e+ elastic scattering. A comparative study between the LW and the Coulomb potentials is also done.


Author(s):  
Robert S. Van Dyck ◽  
Paul B. Schwinberg ◽  
Hans G. Dehmelt

2018 ◽  
Vol 10 (6) ◽  
pp. 24 ◽  
Author(s):  
Andrew Worsley ◽  
J.F. Peters

The electron magnetic moment anomaly is conventionally derived from the fine structure constant using a complex formula requiring over 13,000 evaluations. However, the charge of the electron is an important parameter of the Standard Model and could provide an enhanced basis for the derivation of the electron magnetic moment anomaly. This paper uses a geometric model to reformulate the equation for the electron&rsquo;s charge, this is then used to determine a more accurate value for the electron magnetic moment anomaly from first geometric principles. This enhanced derivation uses a single evaluation, using a concise mathematical equation based on the natural log e^pi. This geometric model will lead to further work to theoretically improve the understanding of the electron.


2005 ◽  
Vol 60 (8) ◽  
pp. 821-830 ◽  
Author(s):  
Jan F. Riecken ◽  
Gunter Heymann ◽  
Theresa Soltner ◽  
Rolf-Dieter Hoffmann ◽  
Hubert Huppertz ◽  
...  

The high-pressure (HP) modification of CePtSn was prepared under multianvil high-pressure (9.2 GPa) high-temperature (1325 K) conditions from the normal-pressure (NP) modification. Both modifications were investigated by powder and single crystal X-ray data: TiNiSi type, Pnma, a = 746.89(9), b = 462.88(4), c = 801.93(7) pm, wR2 = 0.0487, 452 F2 values, 20 variable parameters for NP-CePtSn, and ZrNiAl type, P6̅2m, a = 756.919(5), c = 415.166(4) pm, wR2 = 0.0546, 252 F2 values, 14 variable parameters for HP-CePtSn. Both modifications are built up from platinumcentered trigonal prisms. Together, the platinum and tin atoms form different three-dimensional [PtSn] networks in which the cerium atoms fill channels. The crystal chemistry and chemical bonding of NP- and HP-CePtSn is discussed. Susceptibility measurements of HP-CePtSn indicate Curie-Weiss behavior above 40 K with an experimental magnetic moment of 2.55(1) μB/Ce atom, indicating trivalent cerium. No magnetic ordering could be detected down to 2 K.


Sign in / Sign up

Export Citation Format

Share Document