The High-Pressure Modification of CePtSn – Synthesis, Structure, and Magnetic Properties

2005 ◽  
Vol 60 (8) ◽  
pp. 821-830 ◽  
Author(s):  
Jan F. Riecken ◽  
Gunter Heymann ◽  
Theresa Soltner ◽  
Rolf-Dieter Hoffmann ◽  
Hubert Huppertz ◽  
...  

The high-pressure (HP) modification of CePtSn was prepared under multianvil high-pressure (9.2 GPa) high-temperature (1325 K) conditions from the normal-pressure (NP) modification. Both modifications were investigated by powder and single crystal X-ray data: TiNiSi type, Pnma, a = 746.89(9), b = 462.88(4), c = 801.93(7) pm, wR2 = 0.0487, 452 F2 values, 20 variable parameters for NP-CePtSn, and ZrNiAl type, P6̅2m, a = 756.919(5), c = 415.166(4) pm, wR2 = 0.0546, 252 F2 values, 14 variable parameters for HP-CePtSn. Both modifications are built up from platinumcentered trigonal prisms. Together, the platinum and tin atoms form different three-dimensional [PtSn] networks in which the cerium atoms fill channels. The crystal chemistry and chemical bonding of NP- and HP-CePtSn is discussed. Susceptibility measurements of HP-CePtSn indicate Curie-Weiss behavior above 40 K with an experimental magnetic moment of 2.55(1) μB/Ce atom, indicating trivalent cerium. No magnetic ordering could be detected down to 2 K.

2009 ◽  
Vol 64 (2) ◽  
pp. 170-174 ◽  
Author(s):  
Birgit Heying ◽  
Ute Ch. Rodewald ◽  
Wilfried Hermes ◽  
Rainer Pöttgen

The platinum-rich intermetallic compounds GdPt2In and GdPt2Sn were synthesized by arc-melting of the elements and subsequent annealing. The structures were refined from single crystal X-ray diffractometer data: ZrPt2Al type, space group P63/mmc, a = 455.1(1), c = 899.3(3) pm, wR2 = 0.0361, 166 F2 values, 9 variables for GdPt2In, and a = 453.2(1), c = 906.5(2) pm, wR2 = 0.0915, 166 F2 values, 9 variables for GdPt2Sn. The platinum and indium (tin) atoms build up threedimensional [Pt2In] and [Pt2Sn] networks with short Pt-In (Pt-Sn) distances and Pt2 dumb-bells (290 and 297 pm in GdPt2In and GdPt2Sn). The gadolinium atoms have coordination number 14 with 8 Pt and 6 In (Sn) neighbors. Magnetic susceptibility measurements on GdPt2In show Curie-Weiss behavior with an experimental magnetic moment of 8.06(2) μB/Gd atom. GdPt2In orders ferromagnetically at 27.7(2) K


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Steffen Klenner ◽  
Maximilian Kai Reimann ◽  
Stefan Seidel ◽  
Rainer Pöttgen

Abstract Polycrystalline samples of the stannides Ca1.692Pt2Sn3.308, SrPtSn2 and EuAuSn2 were synthesized directly from the elements, using sealed tantalum ampoules as crucible material. The reactions were performed in muffle or induction furnaces. The phase purity of the samples was studied by X-ray powder diffraction (Guinier technique). The structures of Ca1.692Pt2Sn3.308 and SrPtSn2 were refined from single-crystal X-ray diffractometer data: NdRh2Sn4 type, Pnma, a = 1887.22(13), b = 441.22(3), c = 742.89(4) pm, wR = 0.0626, 1325 F 2 values, 45 variables for Ca1.692(8) Pt2Sn3.308(8) and CeNiSi2 type, Cmcm, a = 462.59(5), b = 1932.8(2), c = 458.00(5) pm, wR = 0.0549, 481 F 2 values, 18 variables for SrPtSn2. The calcium compound shows a homogeneity range Ca1+x Pt2Sn4−x with substantial Sn4/Ca2 mixing on one of the 4c Wyckoff positions. The [PtSn2] network is characterized by Pt–Sn (269–281 pm) and Sn–Sn (306–336 pm) bonding interactions. SrPtSn2 contains two different tin substructures: (i) Sn1–Sn1 zig-zag chains (282 pm) and (ii) orthorhombically distorted Sn2 squares (326 pm) with stronger and weaker Sn–Sn bonding. Together, the platinum and tin atoms build up a three-dimensional [PtSn2] network in which the platinum atoms have a distorted square-pyramidal tin coordination with Pt–Sn distances ranging from 261–270 pm. EuAuSn2 also crystallizes with the CeNiSi2-type structure with the lattice parameters a = 453.9(1), b = 2018.9(5) and c = 456.8(1) pm. Temperature dependent magnetic susceptibility studies indicate europium(II) with an experimental magnetic moment of 8.28(2) µB per Eu atom. EuAuSn2 is ordered antiferromagnetically at T N  = 14.8(2) K. 151Eu Mössbauer spectra confirm the oxidation state +2 for europium (isomer shift δ = −11.17(2) mm s−1) and the magnetic ordering at low temperature (21.8 T magnetic hyperfine field at 6 K).


2001 ◽  
Vol 56 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Dirk Niepmann ◽  
Rainer Pöttgen ◽  
Kristin M. Poduska ◽  
Francis J. DiSalvo ◽  
Henning Trill ◽  
...  

Abstract CeAuSn, Ce3Rh4Sn13, and Ce3lr4Sn13 were prepared by reaction of the elements in an arc-melting furnace and subsequent annealing at 970 K for two weeks. The three stannides were investigated by X-ray powder and single crystal techniques. CeAuSn crystallizes with the NdPtSb type, space group P63mc: a = 472.7(2), c = 771.6(3) pm, wR2 = 0.0230,208 F2 values, 11 variable parameters, and BASF = 0.40(2). The gold and tin atoms form a pronounced two-dimensional [AuSn] polyanion which consists of slightly puckered Au3Sn3 hexagons. ,19Sn Mössbauer data at 78 K show one signal at an isomer shift of δ = 1.90(7) mm/s subjected to unresolved quadrupole splitting of ΔEQ = 0.55(2) mm/s. Ce3Rh4Sn13 and Ce3lr4Sn13 adopt the cubic Yb3Rh4Sn13 type structure, space group Pm3n: a = 970.51(3) pm, wR2 = 0.0721, 267 F2 values (Ce3Rh4Sn13) and a = 972.29(6) pm, wR2 = 0.0850, 267 F2 values (Ce3lr4Sn13) with 14 variable parameters for each refinement. Striking structural motifs in Ce3Rh4Sn13 are condensed distorted trigonal [RhSn6] prisms with Rh-Sn distances of 266 pm. The polyhe­dral network leaves two different cages which are occupied by cerium (6c position) and tin (2a position) atoms. The Sn2 atoms show occupancy parameters of only 92% (Ce3Rh4Sn13) and 76% (Ce3Ir4Sn13) and an extremely large displacement parameter indicating a rattling of these atoms within the icosahedral Sn12 cages. Magnetic susceptibility measurements of Ce3Rh4Sn13 show paramagnetic behavior down to 2 K with an experimental magnetic moment of 2.45(2) μB/Ce. No magnetic ordering is observed. Magnetization measurements show a moment of 0.78(2) μB/Ce at 2 K and 5.5 T. Resistivity data reveal only a very weak tem­perature dependence. The two crystallographically different tin sites are resolved in the 119Sn Mössbauer spectrum which shows a signal at δ = 2.12(1) mm/s subject to quadrupole splitting of 1.54(1) mm/s, superimposed by a singlet at δ = 2.47(1) mm/s. The Seebeck coefficient of Ce3Rh4Sn13 is within a few μ V/K of zero over the temperature range of 10 - 300 K.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1554
Author(s):  
Raimund Ziegler ◽  
Martina Tribus ◽  
Clivia Hejny ◽  
Gunter Heymann

The first high-pressure scandium tellurate HP-Sc2TeO6 was synthesized from an NP-Sc2TeO6 normal-pressure precursor at 12 GPa and 1173 K using a multianvil apparatus (1000 t press, Walker-type module). The compound crystallizes in the monoclinic space group P2/c (no. 13) with a = 729.43(3), b = 512.52(2), c = 1095.02(4) pm and β = 103.88(1)°. The structure was refined from X-ray single-crystal diffractometer data: R1 = 0.0261, wR2 = 0.0344, 568 F2 values and 84 variables. HP-Sc2TeO6 is isostructural to Yb2WO6 and is built up from TeO6 octahedra, typical for tellurate(VI) compounds. During synthesis, a reconstructive transition from P321 (normal-pressure modification) to P2/c (high-pressure modification) takes place and the scandium–oxygen distances as well as the coordination number of scandium increase. However, the coordination sphere around the Te6+ cations gets only slightly distorted. High-temperature powder XRD investigations revealed a back-transformation of HP-Sc2TeO6 to the ambient-pressure modification above 973 K.


2007 ◽  
Vol 62 (12) ◽  
pp. 1581-1584 ◽  
Author(s):  
Ratikanta Mishra ◽  
Wilfried Hermes ◽  
Rainer Pöttgen

The intermetallic compound CePtZn was synthesized from the elements in a sealed tantalum tube by induction melting and structurally characterized by powder and single crystal X-ray diffractometer data: TiNiSi-type, space group Pnma, a = 706.89(19), b = 435.08(15), c = 809.71(16) pm, wR2 = 0.0385, 404 F2 values and 20 variables. The platinum and zinc atoms build up a three-dimensional network of condensed distorted PtZn4/4 tetrahedra with Pt-Zn distances in the range 268 - 273 pm. The cerium atoms fill channels within the [PtZn] network. CePtZn shows Curie-Weiss behavior in the temperature range from 75 to 300 K with μeff = 2.47 μB/Ce atom and θP = −18.7 K, indicating trivalent cerium. No magnetic ordering was detected down to 2 K.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


Sign in / Sign up

Export Citation Format

Share Document