fast rotating
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 77)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Masami Matsubara ◽  
Kohei Ishii ◽  
Hikari Shishido ◽  
Shozo Kawamura ◽  
Tomonari Furukawa

Author(s):  
I Contopoulos ◽  
A Strantzalis ◽  
D Papadopoulos ◽  
D Kazanas

Abstract We investigate long Gamma-Ray Bursts (GRB) which manifest a sharp linear rise followed by an exponential decay in their γ-ray prompt emission observed with the BAT instrument on board the Swift satellite. We offer a simple electrodynamic model that may account for these particular characteristics. We associate the sharp rise with the winding of the magnetic field by the fast rotating core that formed in the interior of the stellar precursor. We also associate the subsequent exponential decay with the electromagnetic spindown of the core following the release of the electromagnetic jet from the stellar interior. Any non-axisymmetric distortion in the rotating core will generate gravitational waves with exponentially decreasing frequency, a so-called ‘down-chirp’. We obtain a detailed estimate of the gravitational wave profile if the distortion of spacetime is due to the winding of a non-axisymmetric component of the magnetic field during that particular phase of the burst. We offer 7 particular time intervals during which one may look into LIGO archival data for the presence of our particular predicted waveforms in order to test our interpretation.


Author(s):  
N Holanda ◽  
N Drake ◽  
W J B Corradi ◽  
F A Ferreira ◽  
F Maia ◽  
...  

Abstract We present the results of a chemical analysis of fast and anomalous rotator giants members of the young open cluster NGC 6124. For this purpose, we carried out abundances of the mixing sensitive species such as Li, C, N, Na and 12C/13C isotopic ratio, as well as other chemical species for a sample of four giants among the seven observed ones. This study is based on standard spectral analysis technique using high-resolution spectroscopic data. We also performed an investigation of the rotational velocity (v sin  i) once this sample exhibit abnormal values – giant stars commonly present rotational velocities of few km s−1. In parallel, we have been performed a membership study, making use of the third data release from ESA Gaia mission. Based on these data, we estimated a distance of d = 630 pc and an age of 178 Myr through isochrone fitting. After that procedure, we matched all the information raised and investigated the evolutionary stages and thermohaline mixing model through of spectroscopic Teff and log  g and mixing tracers, as 12C/13C and Na, of the studied stars. We derived a low mean metallicity of [Fe/H] = −0.13 ±0.05 and a modest enhancement of the elements created by the s-process such as Y, Zr, La, Ce, and Nd, which is in agreement of what has already been reported in the literature for young clusters. The giants analyzed have homogeneous abundances, except for lithium abundance [log  ε(Li)NLTE = 1.08±0.42] and this may be associated to a combination of mechanisms that act increasing or decreasing lithium abundances in stellar atmospheres.


2021 ◽  
Author(s):  
Mikhail Krivokorytov ◽  
Konstantin Koshelev ◽  
Alexander Vinokhodov ◽  
Oleg Yakushev ◽  
Vladimir Ivanov ◽  
...  

Author(s):  
Christian J. Krüger ◽  
Kostas D. Kokkotas ◽  
Praveen Manoharan ◽  
Sebastian H. Völkel

In this review article, we present the main results from our most recent research concerning the oscillations of fast rotating neutron stars. We derive a set of time evolution equations for the investigation of non-axisymmetric oscillations of rapidly rotating compact objects in full general relativity, taking into account the contribution of a dynamic spacetime. Using our code, which features high accuracy at comparably low computational expense, we are able to extract the frequencies of non-axisymmetric modes of compact objects with rotation rates up to the Kepler limit. We propose various universal relations combining bulk properties of isolated neutron stars as well as of binary systems before and after merger; these relations are independent of the true equation of state and may serve as a valuable tool for gravitational wave asteroseismology. We also present an introductory example using a Bayesian analysis.


2021 ◽  
Vol 927 ◽  
Author(s):  
Anna Ipatova ◽  
K.V. Smirnov ◽  
E.I. Mogilevskiy

The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 353
Author(s):  
Sergey Bogovalov ◽  
Maxim Petrov

The objective of this work is to reproduce the formation of the fast polar wind and viscous disk outflow from Be stars in a unified physical picture. Numerical modeling of the plasma outflow from fast rotating stars was performed taking into account the acceleration of the plasma due to scattering of the radiation of the star in lines of plasma ions and excitation of the hydrodynamic turbulence in the outflow. The fast polar wind naturally arises in this picture with an expected flow rate. For the first time, it is shown that a disk-like outflow with a relatively high level of turbulence is formed at the equator of fast rotating stars emitting radiation-driven wind. However, the level of turbulent viscosity is well below the level necessary for the formation of a Keplerian disk.


Author(s):  
Kohta Murase ◽  
Conor M B Omand ◽  
Deanne L Coppejans ◽  
Hiroshi Nagai ◽  
Geoffrey C Bower ◽  
...  

Abstract Fast-rotating pulsars and magnetars have been suggested as the central engines of super-luminous supernovae (SLSNe) and fast radio bursts, and this scenario naturally predicts non-thermal synchrotron emission from their nascent pulsar wind nebulae (PWNe). We report results of high-frequency radio observations with ALMA and NOEMA for three SLSNe (SN 2015bn, SN 2016ard, and SN 2017egm), and present a detailed theoretical model to calculate non-thermal emission from PWNe with an age of ∼1 − 3 yr. We find that the ALMA data disfavors a PWN model motivated by the Crab nebula for SN 2015bn and SN 2017egm, and argue that this tension can be resolved if the nebular magnetization is very high or very low. Such models can be tested by future MeV-GeV gamma-ray telescopes such as AMEGO.


2021 ◽  
Vol 59 (5) ◽  
pp. 376-387
Author(s):  
S. E. Schmalz ◽  
A. O. Novichonok ◽  
V. A. Voropaev ◽  
F. Graziani ◽  
Y. Abdel-Aziz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document