Chern-Simons and two dimensional conformal field theories in a covariant lagrangian approach

1990 ◽  
Vol 243 (1-2) ◽  
pp. 99-104 ◽  
Author(s):  
A. Blasi ◽  
R. Collina
1992 ◽  
Vol 07 (19) ◽  
pp. 4477-4486 ◽  
Author(s):  
MARCO A.C. KNEIPP

We discuss the generalization of Abelian Chern-Simons theories when θ-angles and magnetic monopoles are included. We map these three dimensional theories into sectors of two-dimensional conformal field theories. The introduction of θ-angles allows us to establish in a consistent fashion a connection between Abelian Chern-Simons and 2-d free scalar field compactified on a noneven integral lattice. The Abelian Chern-Simons with magnetic monopoles is related to a conformal field theory in which the sum of the charges of the chiral vertex operators inside a correlator is different from zero.


1997 ◽  
Vol 12 (06) ◽  
pp. 1043-1051 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Ian I. Kogan ◽  
Richard J. Szabo

We investigate Aharonov-Bohm scattering in a theory in which charged bosonic matter field are coupled to topologically massive electrodynamics and topologically massive gravity. We demonstrate that, at one-loop order, the transmuted spins in this theory are related to the ones of ordinary Chern-Simons gauge theory in the same way that the Knizhnik-Polyakov-Zamolodchikov formula relates the Liouville-dressed conformal weights of primary operators to the bare weights of primary operators to the bare weights in two-dimensional conformal field theories. We remark on the implications of this connection two-dimensional conformal field theories and three-dimensional gauge and gravity theories for a topological membrane reformulation of strings. We also discuss some features of the gravitational analog of the Aharonov-Bohm effect.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


2001 ◽  
Vol 16 (12) ◽  
pp. 2165-2173 ◽  
Author(s):  
FARDIN KHEIRANDISH ◽  
MOHAMMAD KHORRAMI

A general two-dimensional fractional supersymmetric conformal field theory is investigated. The structure of the symmetries of the theory is studied. Then, applying the generators of the closed subalgebra generated by (L-1,L0,G-1/3) and [Formula: see text], the two-point functions of the component fields of supermultiplets are calculated.


2000 ◽  
Vol 15 (03) ◽  
pp. 413-428 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We follow Witten's proposal1 in the calculation of conformal anomaly from (d + 1)-dimensional higher derivative gravity via AdS/CFT correspondence. It is assumed that some d-dimensional conformal field theories have a description in terms of above (d + 1)-dimensional higher derivative gravity which includes not only the Einstein term and cosmological constant but also curvature squared terms. The explicit expression for two-dimensional and four-dimensional anomalies is found, it contains higher derivative corrections. In particular, it is shown that not only Einstein gravity but also theory with the Lagrangian L =aR2 + bRμνRμν + Λ (even when a=0 or b=0) is five-dimensional bulk theory for [Formula: see text] super-Yang–Mills theory in AdS/CFT correspondence. Similarly, the d + 1 = 3 theory with (or without) Einstein term may describe d = 2 scalar or spinor CFT's. That gives new versions of bulk side which may be useful in different aspects. As application of our general formalism we find next-to-leading corrections to the conformal anomaly of [Formula: see text] supersymmetric theory from d = 5 AdS higher derivative gravity (low energy string effective action).


Sign in / Sign up

Export Citation Format

Share Document