Influence of massive quasi-particle excitations on a baryon-rich quark-gluon plasma

1990 ◽  
Vol 237 (2) ◽  
pp. 153-158 ◽  
Author(s):  
D.H. Rischke ◽  
M.I. Gorenstein ◽  
H. Stöcker ◽  
W. Greiner
2014 ◽  
Vol 29 (10) ◽  
pp. 1450056 ◽  
Author(s):  
Vishnu M. Bannur

Landau's formalism of statistical mechanics [following L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)] is applied to the quasi-particle model of quark–gluon plasma. Here, one starts from the expression for pressure and develop all thermodynamics. It is a general formalism and consistent with our earlier studies [V. M. Bannur, Phys. Lett. B647, 271 (2007)] based on Pathria's formalism [following R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1977)]. In Pathria's formalism, one starts from the expression for energy density and develop thermodynamics. Both the formalisms are consistent with thermodynamics and statistical mechanics. Under certain conditions, which are wrongly called thermodynamic consistent relation, we recover other formalism of quasi-particle system, like in M. I. Gorenstein and S. N. Yang, Phys. Rev. D52, 5206 (1995), widely studied in quark–gluon plasma.


2010 ◽  
Vol 25 (01) ◽  
pp. 47-54 ◽  
Author(s):  
A-MENG ZHAO ◽  
JING CAO ◽  
LIU-JUN LUO ◽  
WEI-MIN SUN ◽  
HONG-SHI ZONG

In this letter we propose a new method of calculating the equation of state (EOS) of quasi-particle model of quark–gluon plasma at finite chemical potential. In the quasi-particle model the quark propagator has the form of a free quark propagator with a temperature and density dependent effective mass. From this quark propagator the EOS at finite chemical potential is calculated using the model-independent formula proposed in Refs. 16 and 17. A comparison between our EOS and the cold, perturbative EOS of QCD proposed in Ref. 23 is made.


2013 ◽  
Vol 904-905 ◽  
pp. 973c-976c ◽  
Author(s):  
Robert D. Pisarski ◽  
Koji Kashiwa ◽  
Vladimir Skokov

2001 ◽  
Vol 16 (08) ◽  
pp. 531-540 ◽  
Author(s):  
K. OKANO

Within the closed-time-path formalism of nonequilibrium QCD, we derive a Slavnov–Taylor (ST) identity for the gluon polarization tensor. The ST identity takes the same form in both Coulomb and covariant gauges. Application to quasi-uniform quark–gluon plasma (QGP) near equilibrium or nonequilibrium quasistationary QGP is made.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document