quark propagator
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 09003
Author(s):  
Andreas Windisch ◽  
Thomas Gallien ◽  
Christopher Schwarzlmüller

Dyson-Schwinger equations (DSEs) are a non-perturbative way to express n-point functions in quantum field theory. Working in Euclidean space and in Landau gauge, for example, one can study the quark propagator Dyson-Schwinger equation in the real and complex domain, given that a suitable and tractable truncation has been found. When aiming for solving these equations in the complex domain, that is, for complex external momenta, one has to deform the integration contour of the radial component in the complex plane of the loop momentum expressed in hyper-spherical coordinates. This has to be done in order to avoid poles and branch cuts in the integrand of the self-energy loop. Since the nature of Dyson-Schwinger equations is such, that they have to be solved in a self-consistent way, one cannot analyze the analytic properties of the integrand after every iteration step, as this would not be feasible. In these proceedings, we suggest a machine learning pipeline based on deep learning (DL) approaches to computer vision (CV), as well as deep reinforcement learning (DRL), that could solve this problem autonomously by detecting poles and branch cuts in the numerical integrand after every iteration step and by suggesting suitable integration contour deformations that avoid these obstructions. We sketch out a proof of principle for both of these tasks, that is, the pole and branch cut detection, as well as the contour deformation.


2021 ◽  
pp. 115606
Author(s):  
P. Dall'Olio ◽  
T. De Meerleer ◽  
D. Dudal ◽  
S.P. Sorella ◽  
A. Bashir

2021 ◽  
Vol 2094 (3) ◽  
pp. 032027
Author(s):  
K M Semenov-Tian-Shansky ◽  
D A Vokhmintsev

Abstract The JASPER program is the first part of the high-performance computing information system for estimate some elementary particle properties, developing at Petersburg Nuclear Physics Institute. The JASPER is an implementation of the Dyson-Schwinger equation numerical solution for simple dressed quark propagator calculation in rainbow approximation. The Dyson-Schwinger equation solution with the Marice-Tandy Ansatz is one of several phenomenological approaches to obtain quantitative results in quantum chromodynamics (QCD) within strong coupling regime. The JASPER program is programmed in the C++ language and uses the numerical algorithms from the GNU Scientific Library (GSL). The numerical results for dynamical quark mass in complex Euclidean space were obtained. This result will be employed to study the hadron spectrum with the Bethe-Salpeter equation approach.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Giorgio Comitini ◽  
Daniele Rizzo ◽  
Massimiliano Battello ◽  
Fabio Siringo

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
S. Bondarenko ◽  
S. Pozdnyakov ◽  
A. Prygarin

AbstractWe consider a derivation of the hierarchy of correlators of ordered exponentials directly from the Lipatov’s effective action (Lipatov in Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39: 1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125: 01010, 2016) formulated in terms of interacting ordered exponentials (Bondarenko and Zubkov in Eur Phys J C 78(8), 617 2018; Bondarenko et al. in Eur Phys J C 81(7):61, 2021). The derivation of the Balitsky equation (Balitsky in Nucl Phys B 463:99, 1996; Phys Rev D 60:014020, 1999; At the frontier of particle physics, vol. 2, p. 1237–1342; Nucl Phys B 629:290, 2002; Phys Rev D 72:074027, 2005) from the hierarchy is discussed as well as the way the sub-leading eikonal corrections to the Balitsky equation arise from the transverse field contribution and sub-leading eikonal corrections to the quark propagator. We outline other possible applications of the proposed calculation scheme.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1410
Author(s):  
Juan Liu ◽  
Yilun Du ◽  
Song Shi

In a one-flavor NJL model with a finite temperature, chemical potential, and external magnetic field, the self-energy of the quark propagator contains more condensates besides the vacuum condensate. We use Fierz identity to identify the self-energy and propose a self-consistent analysis to simplify it. It turns out that these condensates are related to the chiral separation effect and spin magnetic moment.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexander Lenz ◽  
Maria Laura Piscopo ◽  
Aleksey V. Rusov

Abstract We compute the Darwin operator contribution ($$ 1/{m}_b^3 $$ 1 / m b 3 correction) to the width of the inclusive non-leptonic decay of a B meson (B+, Bd or Bs), stemming from the quark flavour-changing transition b → $$ {q}_1{\overline{q}}_2{q}_3 $$ q 1 q ¯ 2 q 3 , where q1, q2 = u, c and q3 = d, s. The key ideas of the computation are the local expansion of the quark propagator in the external gluon field including terms with a covariant derivative of the gluon field strength tensor and the standard technique of the Heavy Quark Expansion (HQE). We confirm the previously known expressions of the $$ 1/{m}_b^3 $$ 1 / m b 3 contributions to the semi-leptonic decay b → $$ {q}_1\mathrm{\ell}{\overline{\nu}}_{\mathrm{\ell}} $$ q 1 ℓ ν ¯ ℓ , with ℓ = e, μ, τ and of the $$ 1/{m}_b^2 $$ 1 / m b 2 contributions to the non-leptonic modes. We find that this new term can give a sizeable correction of about −4 % to the non-leptonic decay width of a B meson. For Bd and Bs mesons this turns out to be the dominant correction to the free b-quark decay, while for the B+ meson the Darwin term gives the second most important correction — roughly 1/2 to 1/3 of the phase space enhanced Pauli interference contribution. Due to the tiny experimental uncertainties in lifetime measurements the incorporation of the Darwin term contribution is crucial for precision tests of the Standard Model.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3351-3361
Author(s):  
Felix Spengler ◽  
Davide Campagnari ◽  
Hugo Reinhardt

AbstractWe investigate the equal-time (static) quark propagator in Coulomb gauge within the Hamiltonian approach to QCD in d = 2 spatial dimensions. Although the underlying Clifford algebra is very different from its counterpart in d = 3, the gap equation for the dynamical mass function has the same form. The additional vector kernel which was introduced in d = 3 to cancel the linear divergence of the gap equation and to preserve multiplicative renormalizability of the quark propagator makes the gap equation free of divergences also in d = 2.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Kotaro Murakami ◽  
◽  
Yutaro Akahoshi ◽  
Sinya Aoki

Abstract Employing an all-to-all quark propagator technique, we investigate kaon–nucleon interactions in lattice QCD. We calculate the S-wave kaon–nucleon potentials at the leading order in the derivative expansion in the time-dependent HAL QCD method, using (2+1)-flavor gauge configurations on $32^3 \times 64$ lattices with lattice spacing $a \approx 0.09$ fm and pion mass $m_{\pi} \approx 570$ MeV. We take the one-end trick for all-to-all propagators, which allows us to put the zero-momentum hadron operators at both source and sink and to smear quark operators at the source. We find a stronger repulsive interaction in the $I=1$ channel than in the $I=0$. The phase shifts obtained by solving the Schrödinger equations with the potentials qualitatively reproduce the energy dependence of the experimental phase shifts, and have similar behavior to previous results from lattice QCD without all-to-all propagators. Our study demonstrates that the all-to-all quark propagator technique with the one-end trick is useful for studying interactions in meson–baryon systems in the HAL QCD method, so we will apply it to meson–baryon systems which contain quark–antiquark creation/annihilation processes in our future studies.


Sign in / Sign up

Export Citation Format

Share Document