Loss of stability and disappearance of two-dimensional invariant tori in a dissipative dynamical system

1982 ◽  
Vol 91 (5) ◽  
pp. 203-204 ◽  
Author(s):  
Giovanni Riela
2019 ◽  
Vol 29 (12) ◽  
pp. 1950159
Author(s):  
Xiao-Song Yang ◽  
Lei Wang

We first present a mathematical theory on period-increasing as an indicator of stability loss in a dynamical system of any dimension not less than two, and show that in two-dimensional autonomous ODEs, the period-increasing is closely associated with homoclinic or heteroclinic bifurcation. Then we demonstrate that the proposed period-increasing regime shift can occur in some ecological models.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Edson D. Leonel

A phase transition from integrability to nonintegrability in two-dimensional Hamiltonian mappings is described and characterized in terms of scaling arguments. The mappings considered produce a mixed structure in the phase space in the sense that, depending on the combination of the control parameters and initial conditions, KAM islands which are surrounded by chaotic seas that are limited by invariant tori are observed. Some dynamical properties for the largest component of the chaotic sea are obtained and described in terms of the control parameters. The average value and the deviation of the average value for chaotic components of a dynamical variable are described in terms of scaling laws, therefore critical exponents characterizing a scaling function that describes a phase transition are obtained and then classes of universality are characterized. The three models considered are: The Fermi-Ulam accelerator model, a periodically corrugate waveguide, and variant of the standard nontwist map.


2019 ◽  
Vol 383 (13) ◽  
pp. 1441-1449 ◽  
Author(s):  
Antonio Algaba ◽  
Manuel Merino ◽  
Bo-Wei Qin ◽  
Alejandro J. Rodríguez-Luis

2019 ◽  
Vol 29 (08) ◽  
pp. 1950111 ◽  
Author(s):  
Mohammed-Salah Abdelouahab ◽  
René Lozi ◽  
Guanrong Chen

This article investigates the complex phenomena of canard explosion with mixed-mode oscillations, observed from a fractional-order FitzHugh–Nagumo (FFHN) model. To rigorously analyze the dynamics of the FFHN model, a new mathematical notion, referred to as Hopf-like bifurcation (HLB), is introduced. HLB provides a precise definition for the change between a fixed point and an [Formula: see text]-asymptotically [Formula: see text]-periodic solution of the fractional-order dynamical system, as well as the stability of the FFHN model and the appearance of the HLB. The existence of canard oscillations in the neighborhoods of such HLB points are numerically investigated. Using a new algorithm, referred to as the global-local canard explosion search algorithm, the appearance of various patterns of solutions is revealed, with an increasing number of small-amplitude oscillations when two key parameters of the FFHN model are varied. The numbers of such oscillations versus the two parameters, respectively, are perfectly fitted using exponential functions. Finally, it is conjectured that chaos could occur in a two-dimensional fractional-order autonomous dynamical system, with the fractional order close to one. After all, the article demonstrates that the FFHN model is a very simple two-dimensional model with an incredible ability to present the complex dynamics of neurons.


2010 ◽  
Vol 25 (06) ◽  
pp. 1253-1266
Author(s):  
TAMAR FRIEDMANN

We construct a classical dynamical system whose phase space is a certain infinite-dimensional Grassmannian manifold, and propose that it is equivalent to the large N limit of two-dimensional QCD with an O (2N+1) gauge group. In this theory, we find that baryon number is a topological quantity that is conserved only modulo 2. We also relate this theory to the master field approach to matrix models.


Sign in / Sign up

Export Citation Format

Share Document