Two-dimensional fractal growth by diffusion limited aggregation of copper

1989 ◽  
Vol 140 (4) ◽  
pp. 193-196 ◽  
Author(s):  
A.S. Paranjpe ◽  
Sandhya Bhakay-Tamhane ◽  
M.B. Vasan
Author(s):  
Xun Zhou ◽  
Min Zhang ◽  
Chaoyong Deng

A modified Diffusion Limited Aggregation (DLA) model has been established for single and multi-center fractal growth. Number of particles [Formula: see text], size of one step [Formula: see text], deposition probability [Formula: see text], growth direction, and interaction effect are had been take into consideration for fractal analysis. In addition, the effect of internal interaction in multi-center growth have been taken into consideration. Fractal growth morphology shows strong boundary and interaction effects.


1994 ◽  
Vol 367 ◽  
Author(s):  
ST.C. Pencea ◽  
M. Dumitrascu

AbstractDiffusion-limited cluster aggregation has been simulated on a square two dimensional lattice. In order to simulate the brownian motion, we used both the algorithm proposed initially by Kolb et all. and a new algorithm intermediary between a simple random walk and the ballistic model.The simulation was performed for many values of the concentration, from 1 to 50%. By using a box-counting algorithm one has calculated the fractal dimensions of the obtained clusters. Its increasing vs. concentration has been pointed out. The results were compared with those of the classical diffusion-limited aggregation (DLA).


2016 ◽  
Vol 13 (1) ◽  
pp. 91-96
Author(s):  
Jaejun Lee ◽  
Sung Wook Kim ◽  
Youn Ho Park ◽  
Jeong Min Park ◽  
Yeon Joo Kim ◽  
...  

2013 ◽  
Vol 703 ◽  
pp. 71-74
Author(s):  
Shou Gang Sui ◽  
Shu Lan Gong ◽  
Tao Wang

The diffused fractal growth has a wide range of applications in material fields, especially the diffusion limited aggregation. As a result, the research of fractal growth has important significance in material science. In this paper, iterative steps are introduced in Laplace's equation based on the meaning of random walk, and computer simulation is used to analysis the influence of steps' change on fractal growth.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 203-205
Author(s):  
Attila Felinger ◽  
Jänos Liszi

AbstractNon-equilibrium crystallization was simulated on a two dimensional square lattice. Several clusters were grown simultaneously by using the model of diffusion limited aggregation. The growing process was reversible, i.e. dissolution of particles from the boundary of any cluster was made possible. The rate of growth and dissolution was determined by a stochastic method. The simulation resulted in an aggregate pattern having a few large and several small clusters. The fractal dimensions of the large clusters were found in the range of D = 1.62-1.72.


Fractals ◽  
1996 ◽  
Vol 04 (03) ◽  
pp. 251-256 ◽  
Author(s):  
TOSHIHARU IRISAWA ◽  
MAKIO UWAHA ◽  
YUKIO SAITO

For a realistic aggregate grown under the diffusion control, the fractal scaling holds between two cutoff lengths. These cutoff lengths often control the dynamics of aggregation and relaxation. During thermal annealing, coarsening of the aggregate structure takes place, and the lower cutoff length increases. When the relaxation is limited by kinetics, we show by a simple dimensional argument that the perimeter length (or area) A of the aggregate shrinks in a power law with time t as A(t) ~ t(d–1–D)/2 in a d-dimensional space, where D is the fractal dimension of the aggregate. This prediction is tested by Monte Carlo simulation of the thermal relaxation of a two-dimensional diffusion-limited aggregation.


Sign in / Sign up

Export Citation Format

Share Document