Exact diagonalization of the full propagator in IQHE and FQHE configurations

1991 ◽  
Vol 157 (8-9) ◽  
pp. 527-531 ◽  
Author(s):  
A. Cabo ◽  
M. Chaichian
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ludwig Holleis ◽  
Joseph C. Prestigiacomo ◽  
Zhijie Fan ◽  
Satoshi Nishimoto ◽  
Michael Osofsky ◽  
...  

AbstractThe leading order nonlinear (NL) susceptibility, χ3, in a paramagnet is negative and diverges as T → 0. This divergence is destroyed when spins correlate and the NL response provides unique insights into magnetic order. Dimensionality, exchange interaction, and preponderance of quantum effects all imprint their signatures in the NL magnetic response. Here, we study the NL susceptibilities in the proximate Kitaev magnet α-RuCl3, which differs from the expected antiferromagnetic behavior. For T < Tc = 7.5 K and field B in the ab-plane, we obtain contrasting NL responses in low (<2 T) and high field regions. For low fields, the NL behavior is dominated by a quadratic response (positive χ2), which shows a rapid rise below Tc. This large χ2 > 0 implies a broken sublattice symmetry of magnetic order at low temperatures. Classical Monte Carlo (CMC) simulations in the standard K − H − Γ model secure such a quadratic B dependence of M, only for T ≈ Tc with χ2 being zero as T → 0. It is also zero for all temperatures in exact diagonalization calculations. On the other hand, we find an exclusive cubic term (χ3) that describes the high field NL behavior well. χ3 is large and positive both below and above Tc crossing zero only for T > 50 K. In contrast, for B ∥ c-axis, no separate low/high field behaviors are measured and only a much smaller χ3 is apparent.


2004 ◽  
Vol 18 (27n29) ◽  
pp. 3871-3874 ◽  
Author(s):  
KAREL VÝBORNÝ ◽  
DANIELA PFANNKUCHE

Transitions between spin polarized and spin singlet incompressible ground state of quantum Hall systems at filling factor 2/3 are studied by means of exact diagonalization with eight electrons. We observe a stable exactly half–polarized state becoming the absolute ground state around the transition point. This might be a candidate for the anomaly observed during the transition in optical experiments. The state reacts strongly to magnetic inhomogeneities but it prefers stripe–like spin structures to formation of domains.


1997 ◽  
Vol 230-232 ◽  
pp. 421-424 ◽  
Author(s):  
K. Tsutsui ◽  
Y. Ohta ◽  
R. Eder ◽  
S. Maekawa ◽  
E. Dagotto ◽  
...  

1998 ◽  
Vol 12 (29n31) ◽  
pp. 2914-2919
Author(s):  
Chang-De Gong ◽  
Wei-Guo Yin ◽  
P. W. Leung

We study the doping dependence of photoemission spectra for the t-t′-t″-J model by using the exact diagonalization technique and present a consistent theoretical analysis. Both calculations show that upon doping the enhancement of incoherent motion of holes due to the t′ and t″ terms accounts for the formation of the flat region around (π,0) in the quasiparticle dispersion at underdoped and optimally doped region, despite the absence of the flat band at half filling. Our results are in excellent agreement with resent photoemission experiments on Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ [Marshall et al., Phys. Rev. Lett.76, 4841 (1996)] and Sr 2 CuO 2 Cl 2 [Wells et al., Phys. Rev. Lett.74, 964 (1995)].


Sign in / Sign up

Export Citation Format

Share Document