Characterization of a new member of the sea urchin Paracentrotus lividus hsp70 gene family and its expression

Gene ◽  
1992 ◽  
Vol 121 (2) ◽  
pp. 353-358 ◽  
Author(s):  
Gabriella Sconzo ◽  
Giuseppe Scardina ◽  
Maria Grazia Ferraro
1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


1990 ◽  
Vol 14 ◽  
pp. 86
Author(s):  
M FERRARO ◽  
D BUCCHERI ◽  
G GIUDICE ◽  
G SCARDINA ◽  
G SCONZO

1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238 ◽  
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


2020 ◽  
Vol 174 ◽  
pp. 107394
Author(s):  
Qiang He ◽  
Jian Luo ◽  
Jin-Zhi Xu ◽  
Xian-zhi Meng ◽  
Guo-Qing Pan ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e62079 ◽  
Author(s):  
Mattias O. Roth ◽  
Adam G. Wilkins ◽  
Georgina M. Cooke ◽  
David A. Raftos ◽  
Sham V. Nair

2020 ◽  
Vol 167 (9) ◽  
Author(s):  
Mariana Simão ◽  
Mariana Moço ◽  
Luís Marques ◽  
Romana Santos

Abstract Sea urchins have hundreds of specialized adhesive organs, the tube feet, which play a key role in locomotion, substrate attachment and food capture. Tube feet are composed by two functional units: a proximal cylindrical stem that is mobile and flexible, attached to a distal flattened disc that produces adhesive secretions. Oral tube feet discs possess a specialized duo-glandular epidermis that produces adhesive and de-adhesive secretions, enabling strong but reversible adhesion to the substrate. Due to the growing interest in biomimetic adhesives, several studies have been carried out to characterize sea urchin adhesives, and up to date, it has been shown that it is composed by proteins and glycans. The protein fraction has been the subject of several studies, that pin-pointed several adhesion-related candidates. Contrastingly, little is known about the glycans that compose sea urchin adhesives. This study aims at contributing to this topic by focusing on the characterization of the glycosidic fraction of the adhesive secreted by the sea urchin Paracentrotus lividus (Lamarck, 1816), using a battery of 22 lectins, applied to 3 complementary techniques. Our results show that five lectins label exclusively the disc adhesive epidermis and simultaneously the secreted adhesive, being, therefore, most likely relevant for sea urchin adhesion. In addition, it was possible to determine that the glycosidic fraction of the adhesive is composed by a high molecular weight glycoprotein containing N-acetylglucosamine oligomers.


1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


Sign in / Sign up

Export Citation Format

Share Document