Feeding preterm infants a formula containing C20 and C22 fatty acids simulates plasma phospholipid fatty acid composition of infants fed human milk

1992 ◽  
Vol 31 (1) ◽  
pp. 41-51 ◽  
Author(s):  
M.Thomas Clandinin ◽  
Arlene Parrott ◽  
Johny E. Van Aerde ◽  
Arturo R. Hervada ◽  
Eric Lien
2001 ◽  
Vol 90 (2) ◽  
pp. 670-677 ◽  
Author(s):  
Jørn W. Helge ◽  
Ben J. Wu ◽  
Mette Willer ◽  
Jens R. Daugaard ◽  
Leonard H. Storlien ◽  
...  

Training improves insulin sensitivity, which in turn may affect performance by modulation of fuel availability. Insulin action, in turn, has been linked to specific patterns of muscle structural lipids in skeletal muscle. This study investigated whether regular exercise training exerts an effect on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 ± 0.5% and 3.2 ± 0.4% of total fatty acids, respectively) than the untrained leg (8.8 ± 0.5% and 2.6 ± 0.4%, P < 0.05). The ratio between n-6 and n-3 fatty acids was significantly lower in the trained (11.1 ± 0.9) than the untrained leg (13.1 ± 1.2, P < 0.05). In contrast, training did not affect muscle triacylglycerol fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg ( P < 0.05). In this model, diet plays a minimal role, as the influence of dietary intake is similar on both legs. Regular exercise training per se influences the phospholipid fatty acid composition of muscle membranes but has no effect on the composition of fatty acids stored in triacylglycerols within the muscle.


2014 ◽  
pp. 331-339
Author(s):  
S. PETROVIĆ ◽  
M. TAKIĆ ◽  
A. ARSIĆ ◽  
V. VUČIĆ ◽  
D. DRAKULIĆ ◽  
...  

The effects of 8-days treatment with 17α-estradiol (33.3 µg/kg) and progesterone (1.7 mg/kg) on plasma lipids and fatty acid composition of plasma phospholipids were examined in intact (INT) and bilaterally common carotid arteries occluded (BCO) male Wistar rats. Significant decrease of triglyceride level was found in BCO rats after the estradiol treatment. Both hormones elevated proportion of 18:1n-7 fatty acid in INT, but they failed to have such an effect in BCO. Estradiol increased 22:5n-3 and total n-3 polyunsaturated fatty acids (PUFA) in intact, and decreased 18:2n-6 in BCO rats. Significantly lower level of total n-3 was found in progesterone-treated than in estradiol-treated BCO rats. Given that n-3 PUFA have many beneficial effects on cell and tissue function, while n-6 PUFA have mostly the opposite effects, estradiol, rather than progesterone, was seen to improve plasma lipids and phospholipids FA profiles in INT and BCO animals. Estradiol significantly elevated the estimated activity of Δ9-desaturases and progesterone of Δ5-desaturase in BCO group, with no effects in INT rats.


Sign in / Sign up

Export Citation Format

Share Document