On the one-dimensional steady and unsteady porous flow equations

1995 ◽  
Vol 24 (3-4) ◽  
pp. 233-257 ◽  
Author(s):  
H.F. Burcharth ◽  
O.K. Andersen
1995 ◽  
Vol 117 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Reiner Decher

The calculated thrust and mass flow rate of a nozzle depend on the uniformity of the entering flow. The one-dimensional flow equations are extended to arrive at analytic expressions for the predicted performance of a nozzle processing two streams whose properties are determined ahead of the throat. The analysis approach forms the basis for the understanding of flows which have more complex distributions of total pressure and temperature. The uncertainty associated with mixing is examined by the consideration of the two limiting cases: compound flow with no mixing and completely mixed flow. Nozzle discharge and velocity coefficients accounting for non-uniformity are derived. The methodology can be extended to experimentally measured variations of flow properties so that proper geometric design variables may be obtained.


1963 ◽  
Vol 3 (01) ◽  
pp. 19-27 ◽  
Author(s):  
P.M. Blair ◽  
D.W. Peaceman

Abstract The shape and position of the gas-oil transition zone during downdip displacement of oil by gas has been calculated using flow equations which include the effects of gravity, relative permeability, capillary pressure and compressibility of the fluids. The calculations treat the problem in two space dimensions, and results are compared with data from a laboratory model tilted at 30 degrees and 60 degrees from the horizontal on displacements near and above the maximum rate at which gravity segregation prevents channeling of the gas along the top of the stratum. The good agreement between calculated and experimental results demonstrates the validity of the technique as well as that of the flow equations. Introduction Knowledge of the fluid distribution and movement in and oil reservoirs important in producing operations and estimation of reserves. The history of the oil industry has included steady progress in improving the accuracy of calculations which provide the required knowledge. The earliest method of calculating reservoir performance consisted of material-balance equations based on the assumption that all properties were uniform throughout a reservoir. For many reservoirs such a simple formulation is still the most useful. However, when large pressure and saturation gradients exist in a reservoir, the assumption of uniform values throughout may lead to significant error. To reduce these errors, Buckley and Leverett introduced a displacement equation which considers pressure and saturation gradients. Methods available at that time permitted solutions to the Buckley-Leverett equation in one space dimension; these solutions have been very useful in solving many problems related to the production of oil. However, the one-dimensional methods are not adequate for systems in which saturations vary in directions other than the direction of flow. An example of such a system is the case of gas displacing oil down a dipping stratum in which the gas-oil contact becomes significantly tilted. Of course, the Buckley-Leverett displacement method cannot predict the tilt of the gas-oil contact. Recent improvements of the one-dimensional Buckley-Leverett method achieve some success in predicting the tilt of the gas-oil contact at sufficiently low flow rates. However, at rates high enough that the viscous pressure gradient nearly equals or exceeds the gravity gradient, even these improved one-dimensional methods incorrectly predict the shape and velocity of the contact. Further progress in estimating such fluid movements in a reservoir appears to require consideration of the problem in more than one space dimension. The recent two-dimensional method of Douglas, Peaceman and Rachford appears adaptable to calculate changes with time of the saturation distribution in a vertical cross-section of a reservoir. The movement of saturation contours should represent the moving fluid contacts and include the effects of crossflow due to gravity, as well as variations in the rock and fluid properties. The nonlinear nature of the equations used in the method has prevented proof of the validity of the solutions. Douglas, Peaceman and Rachford made some comparisons with experiment but did not include cases in which gravity was important nor cases involving displacement by the nonwetting phase. Forthesereasons, atestof the two-dimensional method for a case in which these factors are included would be very desirable. The test selected was a comparison of calculated results with those from a carefully controlled laboratory experiment on a model with measured physical properties. The model selected was one in which gas displaced oil down a tilted, rectangular sand pack. The model can be thought of as representing a vertical cross-section taken parallel to the dip of a reservoir. The displacement thus simulates gas displacing oil downdip that might result from gas-cap expansion or gas injection. SPEJ P. 19^


2001 ◽  
Author(s):  
Ziwen Xing ◽  
Xueyuan Peng ◽  
Xiaojun Zhang ◽  
Tiansheng Cui

Abstract Even in the absence of valves, flow through the discharge port of a screw compressor is oscillatory in nature. This unsteady but periodic flow variation at the discharge port excites the pressure pulsation. In this paper, the one-dimensional unsteady gas flow equations describing the discharge pressure pulsation are established, which allow for the effects of the viscosity friction and heat transfer between the gas and the pipe, and the boundary conditions of discharge pressure pulsation are considered. With Two-Step Lax-Wendroff scheme used, the one-dimensional unsteady gas flow equations are solved. In order to verify the theoretic analysis, the discharge pressure pulsation at variable working conditions is measured. It is shown that the model established in this paper is valid for getting a better understanding of the mechanism governing the behavior of the pressure pulsation in discharge pipe. It is found that the most important factor that affects the discharge pressure pulsation is the pressure difference between the actual discharge pressure and the design discharge pressure.


1990 ◽  
Vol 7 (2) ◽  
pp. 277-300
Author(s):  
Kiyoshi Mochizuki ◽  
Ryuichi Suzuki

2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


Sign in / Sign up

Export Citation Format

Share Document