Dynamics of surf-zone turbulence in a strong plunging breaker

1995 ◽  
Vol 24 (3-4) ◽  
pp. 177-204 ◽  
Author(s):  
Francis C.K. Ting ◽  
James T. Kirby
Keyword(s):  
1970 ◽  
Vol 1 (12) ◽  
pp. 24 ◽  
Author(s):  
Alfred Fuhrboter

Even m shallow water, only a part of wave energy is lost by turbulent viscosity and bottom friction, most of wave energy transfer takes place m the narrow zone of surf at the shore. Till to the point of breaking, the theoretical conception of an one-phase flow may be applied to the problem. From beginning of breaking, however, the effect of aeration can not be neglected. Prom a simple physical consideration, the sudden reduction of wave height and wave energy inside the surf zone can be explained by the entrainment of air bubbles into the water. Except compression and surface tension effects, most of wave energy is stored at first by the static energy of the air bubbles which are driven into the water. Using idealized assumptions for calculation (uniform concentration of air bubbles a.s.o.), it can be shown that m a plunging breaker the wave energy is dissipated on a very short way (less than on wave length), for a spilling breaker however, this way is of the order of some wave lengths.


2012 ◽  
Vol 32 ◽  
pp. 1-16 ◽  
Author(s):  
Narumon Emarat ◽  
David I.M. Forehand ◽  
Erik D. Christensen ◽  
Clive A. Greated

1974 ◽  
Vol 1 (14) ◽  
pp. 103
Author(s):  
R.L. Miller ◽  
S. Leverette ◽  
J. O'Sullivan ◽  
J. Tochko ◽  
K. Theriault

Field measurements were made of the vertical distribution of impact pressures exerted by breaking waves. Four distinct types are recognized and compared. These are near-breaking wave, plunging breaker, spilling breaker and post-breaking bore. The measurements were obtained by placing a 6 foot aluminum flat plate, backed by a cylinder in the surf zone, so that the fiat faced the approaching breakers. Five sensors were placed at one foot intervals on the flat. The sensors consisted of strain gage mounted aluminum diaphragms. Results indicated that impact pressure is significantly influenced by breaker type. The bore generated the largest impact pressures, followed in decreasing order by plunging breaker, spilling breaker and near breaking wave. In the vertical array, the largest impact pressures were recorded at or near the top, except for the bore where the reverse occurred. A qualitative explanation is given of various phenomena associated with impact pressures, by considering breaker mechanics.


2011 ◽  
Vol 1 (32) ◽  
pp. 11
Author(s):  
Pierre Lubin ◽  
Stéphane Glockner ◽  
Olivier Kimmoun ◽  
Hubert Branger

Numerical simulation of spilling breaking waves is still a very challenging aim to achieve since small interface deformations, air entrainment and vorticity generation are involved during the early stage of the breaking of the wave. High mesh grid resolutions and appropriate numerical methods are required to capture accurately the length scales of the complex mechanisms responsible for the start of the breaking (small plunging jet, white foam, etc.). Numerical works usually showed better agreements when simulating plunging breaking waves than the spilling case compared with available experimental data. Kimmoun and Branger (2007) recently experimented surf-zone breaking waves. Detailed pictures showed a short spilling event occurred at the crest of the waves, before degenerating into strong plunging breaker. This work is devoted to the qualitative comparison of our numerical results with the experimental observations, as we will focus on capturing and describing the spilling phase experimented.


Author(s):  
Jung Lyul Lee ◽  
Hsiang Wang
Keyword(s):  

Author(s):  
O. R. Sørensen ◽  
P. A. Madsen ◽  
H. A. Schäffer

Author(s):  
Kiyoshi Horikawa ◽  
Ming-Chung Lin ◽  
Tamio O. Sasaki
Keyword(s):  

1995 ◽  
Vol 17 (4) ◽  
pp. 6-12
Author(s):  
Nguyen Tien Dat ◽  
Dinh Van Manh ◽  
Nguyen Minh Son

A mathematical model on linear wave propagation toward shore is chosen and corresponding software is built. The wave transformation outside and inside the surf zone is considered including the diffraction effect. The model is tested by laboratory and field data and gave reasonables results.


2002 ◽  
Author(s):  
Don L. Boyer ◽  
Harindra J. Fernando ◽  
Sergey I. Voropayev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document