scholarly journals FIELD MEASUREMENTS OF IMPACT PRESSURES IN SURF

1974 ◽  
Vol 1 (14) ◽  
pp. 103
Author(s):  
R.L. Miller ◽  
S. Leverette ◽  
J. O'Sullivan ◽  
J. Tochko ◽  
K. Theriault

Field measurements were made of the vertical distribution of impact pressures exerted by breaking waves. Four distinct types are recognized and compared. These are near-breaking wave, plunging breaker, spilling breaker and post-breaking bore. The measurements were obtained by placing a 6 foot aluminum flat plate, backed by a cylinder in the surf zone, so that the fiat faced the approaching breakers. Five sensors were placed at one foot intervals on the flat. The sensors consisted of strain gage mounted aluminum diaphragms. Results indicated that impact pressure is significantly influenced by breaker type. The bore generated the largest impact pressures, followed in decreasing order by plunging breaker, spilling breaker and near breaking wave. In the vertical array, the largest impact pressures were recorded at or near the top, except for the bore where the reverse occurred. A qualitative explanation is given of various phenomena associated with impact pressures, by considering breaker mechanics.

1974 ◽  
Vol 1 (14) ◽  
pp. 45 ◽  
Author(s):  
Ole Secher Madsen

The possible effect on the stability of a porous sand bed of the flow induced within the bed during the passage of near-breaking or breaking waves is considered. It is found that the horizontal flow rather than the vertical flow within the bed may affect its stability. An approximate analysis, used in geotechnical computations of slope stability, indicates that a momentary bed failure is likely to occur during the passage of the steep front slope of a near-breaking wave. Experimental results for the pressure gradient along the bottom under near-breaking waves are presented. These results indicate that the pressure gradient is indeed of sufficient magnitude to cause the momentary failure suggested by the theoretical analysis. The loss of stability of the bed material due to the flow induced within the bed itself may affect the amount of material set in motion during the passage of a near-breaking or breaking wave, in particular, in model tests employing light weight bed material. The failure mechanism considered here is also used as the basis for a hypothesis for the depth of disturbance of the bed in the surf zone. The flow induced in a porous bed is concluded to be an important mechanism which should be considered when dealing with the wave-sediment interaction in the surf zone.


Author(s):  
Mustafa Kemal Ozalp ◽  
Serdar Beji

For realistic wave simulations in the nearshore zone besides nonlinear interactions, the dissipative effects of wave breaking must also be taken into account. This paper presents the applications of a spectral nonlinear wave model with a dissipative breaking mechanism introduced by Beji and Nadaoka (1997). Results obtained for spectral components are converted to the time series and compared with Beji and Battjes' (1993) laboratory measurements and the field measurements of Nakamura and Katoh (1992) in the surf zone. While the model predicts the spilling-type breaking of irregular waves in acceptable agreement with the measurements in time domain, the agreement is unsatisfactory for plunging-type breakers.


1970 ◽  
Vol 1 (12) ◽  
pp. 24 ◽  
Author(s):  
Alfred Fuhrboter

Even m shallow water, only a part of wave energy is lost by turbulent viscosity and bottom friction, most of wave energy transfer takes place m the narrow zone of surf at the shore. Till to the point of breaking, the theoretical conception of an one-phase flow may be applied to the problem. From beginning of breaking, however, the effect of aeration can not be neglected. Prom a simple physical consideration, the sudden reduction of wave height and wave energy inside the surf zone can be explained by the entrainment of air bubbles into the water. Except compression and surface tension effects, most of wave energy is stored at first by the static energy of the air bubbles which are driven into the water. Using idealized assumptions for calculation (uniform concentration of air bubbles a.s.o.), it can be shown that m a plunging breaker the wave energy is dissipated on a very short way (less than on wave length), for a spilling breaker however, this way is of the order of some wave lengths.


1968 ◽  
Vol 1 (11) ◽  
pp. 18 ◽  
Author(s):  
Douglas L. Inman ◽  
Paul D. Komar ◽  
Anthony J. Bowen

Simultaneous field measurements of the energy flux of breaking waves and the resulting longshore transport of sand in the surf zone have been made along three beaches and for a variety of wave conditions. The measurements indicate that the longshore transport rate of sand is directly proportional to the longshore component of wave power.


1986 ◽  
Vol 1 (20) ◽  
pp. 72 ◽  
Author(s):  
David R. Basco ◽  
Takao Yamashita

Breaking waves undergo a transition from oscillatory, irrotational motion, to highly rotational (turbulent) motion with some particle translation. On plane or monotonically decreasing beach profiles, this physically takes place in such a way that the mean water level remains essentially constant within the transition region. Further shoreward a rapid set-up takes place within the inner, bore-like region. The new surf zone model of Svendsen (1984) begins at this transition point and the new wave there contains a trapped volume of water within the surface roller moving with the wave speed. This paper describes a simple model over the transition zone designed to match the Svendsen (1984) model at the end of the transition region. It uses a simple, linear growth model for the surface roller area development and semi-empirical model for the variation of the wave shape factor. Breaking wave type can vary from spilling through plunging as given by a surf similarity parameter. The model calculates the wave height decrease and width of the transition region for all breaker types on plane or monotonically depth decreasing beaches.


2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


1974 ◽  
Vol 1 (14) ◽  
pp. 40 ◽  
Author(s):  
Ivar G. Jonsson ◽  
Ove Skovgaard ◽  
Torben S. Jacobsen

The steady state profile of the longshore current induced by regular, obliquely incident, breaking waves, over a bottom with arbitrary parallel bottom contours, is predicted. A momentum approach is adopted. The wave parameters must be given at a depth outside the surf zone, where the current velocity is very small. The variation of the bottom roughness along the given bottom profile must be prescribed in advance. Depth refraction is included also in the calculation of wave set-down and set-up. Current refraction and rip-currents are excluded. The model includes two new expressions, one for the calculation of the turbulent lateral mixing, and one for the turbulent bottom friction. The term for the bottom friction is non-linear. Rapid convergent numerical algorithms are described for the solution of the governing equations. The predicted current profiles are compared with laboratory experiments and field measurements. For a plane sloping bottom, the influence of different eddy viscosities and constant values of bottom roughness is examined.


1982 ◽  
Vol 1 (18) ◽  
pp. 1 ◽  
Author(s):  
T. Sakai ◽  
Y. Inada ◽  
I. Sandanbata

Horizontal and vertical velocities are measured with a hot-film anemometer (HFA) and a two-component laser-doppler velocimeter(LDV) in surf zones on uniform slopes of about 1/30 in two wave tanks. The turbulence generated by wave breaking is detected from the records. Following three aspects of the turbulence are discussed : (1) the distribution of the turbulence intensity in the surf zone, (2) the variation of the vertical distribution of the turbulence during one wave period and (3) the variation of the Reynolds stress during one wave period. It is found that the pattern of the distribution of the turbulence in the surf zone depends on the breaker type. A model is proposed, by extending the turbulent wake theory, to explain the variation of the vertical distribution of the turbulence during one wave period.


1988 ◽  
Vol 1 (21) ◽  
pp. 20
Author(s):  
Johannes Oelerich ◽  
Hans-Henning Dette

Since wave energy dissipation in the surf zone is a stochastic process closed mathematical formulations cannot be expected. The dissipation was computed using several analytical and/or empirical approaches and compared with prototype measurements in the Big Wave Flume (GWK) in Hannover as well as with field measurements from the west coast, of the Island of Sylt/North Sea. Generally good agreements were found for moderate energy dissipation conditions (spilling-breaker), whereas in the case of plunging breakers, however, the fitting is not solved satisfactory.


2011 ◽  
Vol 1 (8) ◽  
pp. 2 ◽  
Author(s):  
Charles L. Bretschneider

This paper discusses the problem pertaining to the modification of the wave spectrum over the continental shelf. Modification factors include bottom friction, percolation, refraction, breaking waves, ocean currents, and regeneration of wind waves in shallow water, among other factors. A formulation of the problem is presented but no general solution is made, primarily because of lack of basic data. Several special solutions are presented based on reasonable assumptions. The case for a steep continental shelf with parallel bottom contours and wave crests parallel to the coast and for which bottom friction is neglected has been investigated. For this case it is found that the predominant period shifts toward longer periods. The implication is, for example, that the significant periods observed along the U. S. Pacific coast are longer than those which would be observed several miles westward over deep water. The case for a gentle continental shelf with parallel bottom contour and wave crests parallel to the coast and for which bottom friction is important has also been investigated. For this case it is found that the predominant period shifts toward shorter periods as the water depth decreases. The implication is, for example, that the significant periods observed in the shallow water over the continental shelf are shorter than those which would be observed beyond the continental slope. In very shallow water, because shoaling becomes important, a secondary peak appears at higher periods. The joint distribution of wave heights and wave periods is required in order to determine the most probable maximum breaking wave, which can be of lesser height than the most probable maximum non-breaking wave. In very shallow water the most probable maximum breaking wave which first occurs would be governed by the breaking depth criteria, whereas in deepwater wave steepness can also be a governing factor. It can be expected that in very shallow water the period of the most probable maximum breaking wave should be longer than the significant period; and for deeper water the period of the most probable maximum breaking wave can be less than the significant period.


Sign in / Sign up

Export Citation Format

Share Document