Solitons in pseudo one-dimensional hydrogen bonded ferroelectrics

1980 ◽  
Vol 102 (3) ◽  
pp. 554-560 ◽  
Author(s):  
S. Stamenković ◽  
R.B. Žakula
2016 ◽  
Vol 72 (9) ◽  
pp. 692-696 ◽  
Author(s):  
Christina A. Capacci-Daniel ◽  
Jeffery A. Bertke ◽  
Shoaleh Dehghan ◽  
Rupa Hiremath-Darji ◽  
Jennifer A. Swift

Hydrogen bonding between urea functionalities is a common structural motif employed in crystal-engineering studies. Crystallization of 1,3-bis(3-fluorophenyl)urea, C13H10F2N2O, from many solvents yielded concomitant mixtures of at least two polymorphs. In the monoclinic form, one-dimensional chains of hydrogen-bonded urea molecules align in an antiparallel orientation, as is typical of many diphenylureas. In the orthorhombic form, one-dimensional chains of hydrogen-bonded urea molecules have a parallel orientation rarely observed in symmetrically substituted diphenylureas.


2005 ◽  
Vol 29 (11) ◽  
pp. 1390 ◽  
Author(s):  
Wei Wang ◽  
Shuling Gong ◽  
Yuanyin Chen ◽  
Jianpin Ma

1986 ◽  
Vol 107 (2-3) ◽  
pp. 389-396 ◽  
Author(s):  
Yoshiki Kashimori ◽  
Fuchun Chien ◽  
Kichisuke Nishimoto

2015 ◽  
Vol 71 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Abdellatif Bensegueni ◽  
Aouatef Cherouana ◽  
Slimane Dahaoui

Two alkaline earth–tetrazole compounds, namelycatena-poly[[[triaquamagnesium(II)]-μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N5] hemi{bis[μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one-dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which formR22(7) rings, thus reinforcing the propagation of the polymer chain along theaaxis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of typesR22(7),R22(9) andR24(10), running along thecaxis, which are linked byR24(16) rings, generating a 4,8-cflunet.


2012 ◽  
Vol 68 (5) ◽  
pp. o188-o194 ◽  
Author(s):  
Andreas Lemmerer ◽  
Manuel A. Fernandes

Six ammonium carboxylate salts, namely cyclopentylammonium cinnamate, C5H12N+·C9H7O2−, (I), cyclohexylammonium cinnamate, C6H14N+·C9H7O2−, (II), cycloheptylammonium cinnamate form I, C7H16N+·C9H7O2−, (IIIa), and form II, (IIIb), cyclooctylammonium cinnamate, C8H18N+·C9H7O2−, (IV), and cyclododecylammonium cinnamate, C12H26N+·C9H7O2−, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O−hydrogen bonds forming one-dimensional hydrogen-bonded columns consisting of repeatingR43(10) rings, while salt (I) has a two-dimensional network made up of alternatingR44(12) andR68(20) rings. Salt (III) consists of two polymorphic forms,viz.form I havingZ′ = 1 and form II withZ′ = 2. The latter polymorph has disorder of the cycloheptane rings in the two cations, as well as whole-molecule disorder of one of the cinnamate anions. A similar, but ordered,Z′ = 2 structure is seen in salt (IV).


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


2018 ◽  
Vol 74 (5) ◽  
pp. 608-617 ◽  
Author(s):  
Mahsa Eghbali Toularoud ◽  
Mehrdad Pourayoubi ◽  
Michal Dušek ◽  
Václav Eigner ◽  
Krishnan Damodaran

The two single-enantiomer phosphoric triamides N-(2,6-difluorobenzoyl)-N′,N′′-bis[(S)-(−)-α-methylbenzyl]phosphoric triamide, [2,6-F2-C6H3C(O)NH][(S)-(−)-(C6H5)CH(CH3)NH]2P(O), denoted L-1, and N-(2,6-difluorobenzoyl)-N′,N′′-bis[(R)-(+)-α-methylbenzyl]phosphoric triamide, [2,6-F2-C6H3C(O)NH][(R)-(+)-(C6H5)CH(CH3)NH]2P(O), denoted D-1, both C23H24F2N3O2P, have been investigated. In their structures, chiral one-dimensional hydrogen-bonded architectures are formed along [100], mediated by relatively strong N—H...O(P) and N—H...O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph-set motifs R 2 2(10), R 2 1(6) and C 2 2(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L-1 at 120 K and of D-1 at 95 K, the unit-cell dimensions and volume show a slight difference; the contraction in the volume of D-1 with respect to that in L-1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry-independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L-1 and D-1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Makoto Tadokoro ◽  
Kyosuke Isoda ◽  
Yasuko Tanaka ◽  
Yuko Kaneko ◽  
Syoko Yamamoto ◽  
...  

Anionic tris (biimidazolate) nickelate (II) ([Ni(Hbim)3]−), which is a hydrogen-bonding (H-bonding) molecular building block, undergoes self-organization into honeycomb-sheet superstructures connected by complementary intermolecular H-bonds. The crystal obtained from the stacking of these sheets is assembled into channel frameworks, approximately 2 nm wide, that clathrate two cationic K+-crown ether derivatives organised into one-dimensional (1D) double-columnar arrays. In this study, we have shown that all five cationic guest-included crystals form nanochannel structures that clathrate the 1-D double-columnar arrays of one of the four types of K+-crown ether derivatives, one of which induces a polymorph. This is accomplished by adaptably fitting two types of anionic [Ni(Hbim)3]−host arrays. One is a network with H-bonded linkages alternating between the two different optical isomers of the and types with flexible H-bonded [Ni(Hbim)3]−. The other is a network of a racemate with 1-D H-bonded arrays of the same optical isomer for each type. Thus, [Ni(Hbim)3]−can assemble large cations such as K+crown-ether derivatives into double-columnar arrays by highly recognizing flexible H-bonding arrangements with two host networks of and .


Sign in / Sign up

Export Citation Format

Share Document