scholarly journals Synthesis and crystal structure of a 6-chloronicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine

Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.

Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] trihydrate], {[Ni(6-Fnic)2(4,4′-bpy)(H2O)2]·3H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4′-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4′-bipyridine ligands, forming a trans isomer. The bridging 4,4′-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1\overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R 8 8(24) and hexameric R 8 6(16) loops.


2015 ◽  
Vol 71 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Abdellatif Bensegueni ◽  
Aouatef Cherouana ◽  
Slimane Dahaoui

Two alkaline earth–tetrazole compounds, namelycatena-poly[[[triaquamagnesium(II)]-μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N5] hemi{bis[μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one-dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which formR22(7) rings, thus reinforcing the propagation of the polymer chain along theaaxis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of typesR22(7),R22(9) andR24(10), running along thecaxis, which are linked byR24(16) rings, generating a 4,8-cflunet.


IUCrData ◽  
2017 ◽  
Vol 2 (10) ◽  
Author(s):  
Lucia Piñeiro-López ◽  
Francisco Javier Valverde-Muñoz ◽  
Maksym Seredyuk ◽  
Kateryna Znovjyak

The molecular structure of the title compound, [FePt(CN)4(C14H8N2)2(H2O)2]n, consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–]∞chains. Two water molecules and two monodentate 1,4-bis(pyridin-4-yl)buta-1,3-diyne (bpb) ligand molecules complete the octahedral coordination sphere of the FeIIatoms. The Fe—N(py) bond length (py is pyridine) is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The water molecules are hydrogen bonded to either bpb ligands or cyanide groups of the planar [Pt(CN)4]2−anion of adjacent polymeric chains. These O—H...N hydrogen bonds, in conjunction with offset and tilted π–π stacking interactions between bpb ligands and cyanide groups, extend the one-dimensional chains into a three-dimensional assembly.


Author(s):  
Sergey P. Gavrish ◽  
Sergiu Shova ◽  
Maria Cazacu ◽  
Yaroslaw D. Lampeka

The asymmetric unit of the title compound, catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-4,4′-(diphenylsilanediyl)dibenzoato-κ2 O:O′] sesquihydrate], {[Ni(C26H18O4Si)(C10H24N4)]·1.5H2O} n , consists of the halves of the centrosymmetric macrocyclic cation and the C 2-symmetric dicarboxylate dianion and of the water molecule of crystallization. The Ni2+ ion is coordinated by the four secondary N atoms of the macrocyclic ligand characterized by the most energetically favourable trans-III conformation and two mutually trans O atoms of the carboxylate, forming a slightly tetragonally elongated trans-N4O2 octahedron. The crystals are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] direction. Each polymeric chain is bonded to four neighbouring ones via water molecules providing O—H...O hydrogen bonds to the non-coordinated carboxyl O atoms to form a three-dimensional supramolecular network.


2002 ◽  
Vol 55 (11) ◽  
pp. 741 ◽  
Author(s):  
Jin-Hua Yang ◽  
Shao-Liang Zheng ◽  
Jun Tao ◽  
Gao-Feng Liu ◽  
Xiao-Ming Chen

Two complexes, [Zn(Him)2(mpa)] (1) and [Zn(Him)2(tpa)]·H2O (2) (Him = imidazole, mpa = m-phthalate, and tpa = terephthalate), have been prepared and structurally characterized, revealing two different three-dimensional hydrogen-bonded molecular architectures. Each features [Zn(Him)2(dicarboxylate)] zigzag polymeric chains and intermolecular N–H…O hydrogen bonds between the uncoordinated Him nitrogen atoms and carboxylate oxygen atoms that are similar to the carboxylate–histidine–zinc triad systems in zinc(II) enzymes. The lattice water molecules in complex (2) play a critical role in the formation of a three-dimensional hydrogen-bonded molecular architecture.


2015 ◽  
Vol 71 (10) ◽  
pp. 903-907 ◽  
Author(s):  
Yongfeng Yang ◽  
Tao Li ◽  
Yanmei Chen

The title compound, poly[[diaqua-1κ2O-tetrakis(μ3-pyridine-2,3-dicarboxylato)-2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2-diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P\overline{1}) symmetry, was prepared by the reaction of pyridine-2,3-dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine-2,3-dicarboxylate (pydc2−) ligand exhibits μ3-η1,η1:η1:η1and μ3-η1,η1:η1,η1:η1coordination modes, bridging two FeIIIcations and one SrIIcation. The SrIIcation, which is located on an inversion centre, is eight-coordinated by six O atoms of four pydc2−ligands and two water molecules. The coordination geometry of the SrIIcation can be best described as distorted dodecahedral. The FeIIIcation is six-coordinated by O and N atoms of four pydc2−ligands in a slightly distorted octahedral geometry. Each FeIIIcation bridges two neighbouring FeIIIcations to form a one-dimensional [Fe2(pydc)4]nchain. The chains are connected by SrIIcations to form a three-dimensional framework. The topology type of this framework istfj. The structure displays O—H...O and C—H...O hydrogen bonding.


Author(s):  
Jie Ma ◽  
Wen-Zhi Zhang ◽  
Jie Xiong ◽  
Chun-Yan Yan

The title coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O} n , was crystallized at room temperature from an aqueous solution of 2-aminodiacetic terephthalic acid (H4adtp) and cobalt(II) nitrate. The asymmetric unit consists of one adtp4− ligand, one and two half CoII ions, six water ligands coordinated to CoII ions and five uncoordinated water molecules. Two of the cobalt cations lie on centres of inversion and are coordinated in octahedral O2(OH2)4 environments, whereas the other adopts a slightly distorted octahedral NO3(OH2)2 environment. The crystal structure contains parallel stacked, one-dimensional zigzag chains, {[Co2(C12H7NO8)(H2O)6]} n , which assemble into a three-dimensional supramolecular architecture via networks of hydrogen bonds involving the coordinated and free water molecules. One-dimensional `water tapes' are formed, containing alternating six-membered and twelve-membered rings of water molecules, together with water pentamers, in which a central uncoordinated water molecule is hydrogen bonded to two coordinated and two free water molecules in a tetrahedral arrangement.


2021 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Cai-Ming Liu ◽  
You Song

Ferromagnetic coupling exists in an uneven chain-like copper(II) complex with both end-on azido and syn-syn carboxylato bridges, (Cu3(L)2(N3)4(H2O)3)n (1, HL = 6-hydroxynicotinic acid). It is the first example of one-dimensional (1D) chain-like copper(II) coordination polymer showing both metamagnetic behavior and long-range magnetic ordering (Tc = 6.7 K), thanks to the interchain hydrogen bonds, which make a three-dimensional (3D) supramolecular array of the entire molecular structure and mediate the interchain antiferromagnetic interaction.


Author(s):  
Haruki Sugiyama

The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O4 2−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N2 2+·C17H8F6O4 2−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z′ = 2 and in space group Pbca with Z′ = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules.


2018 ◽  
Vol 74 (10) ◽  
pp. 1128-1132 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Jun-Di Zhang ◽  
Huai-Xia Yang

Imidazole-4,5-dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen-bonding donors and acceptors. A new one-dimensional coordination polymer, namely catena-poly[[diaquacadmium(II)]-μ3-2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2] n or [Cd(H2Phbidc)1/2(H2O)2] n , has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six-coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six-coordinated by two N atoms and two O atoms from two symmetry-related H2Phbidc4− ligands and by two O atoms from two symmetry-related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one-dimensional chain which runs parallel to the b axis. In the crystal, the one-dimensional chains are connected through hydrogen bonds, generating a two-dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three-dimensional structure in the solid state.


Sign in / Sign up

Export Citation Format

Share Document