Particle size in parenteral fat emulsions, what are the true limitations?

1996 ◽  
Vol 134 (1-2) ◽  
pp. 235-238 ◽  
Author(s):  
V Koster
Keyword(s):  
2009 ◽  
Vol 136 (5) ◽  
pp. A-25
Author(s):  
Radhika V. Seimon ◽  
Tim J. Wooster ◽  
Baerbel Otto ◽  
Matt Golding ◽  
Li Day ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1201
Author(s):  
Lei Zhou ◽  
Jian Zhang ◽  
Yantao Yin ◽  
Wangang Zhang ◽  
Yuling Yang

The current study aimed to investigate the effects of ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein (MP) pork fat emulsions under different protein/fat ratios. Changes in emulsion profile, confocal laser scanning microscope images, cryo-scanning microscope images, particle size, protein solubility, surface hydrophobicity and free sulfhydryl groups were determined. Ultrasound significantly increased the emulsifying activity, the emulsifying stability and the flow index for all emulsions, while it decreased the viscosity coefficient of emulsions except for the treatment of protein/fat ratio of 1:15. The results showed that sonication reduced the particle size of the fat particles and evenly distributed the emulsion droplets. Sonication moved the distribution curve of droplet size to the smaller particle size direction and decreased the D3,2 and D4,3 values of emulsion. Sonication resulted in increased bindings between protein hydrophobic groups and fat particles. After ultrasound treatment, more sulfhydryl groups were exposed to aqueous solution, which might decrease the protein solubility in aqueous solution. Ultrasound-assisted emulsification could directly enhance the emulsifying and rheological properties of MP-stabilized pork fat emulsions at different protein/fat ratios, in particular at the ratio of 1:10.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Sign in / Sign up

Export Citation Format

Share Document